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1 Modeling

What is a Model?

In this section...

“Model Definition” on page 1-2
“Expressions” on page 1-2
“Quantities” on page 1-3
“Model Hierarchy” on page 1-4
“More About” on page 1-4

Model Definition

A SimBiology® model is composed of a set of expressions (reactions, differential
equations, discrete events), which together describe the dynamics of a biological system.
You write expressions in terms of quantities (compartments, species, parameters), which
are also enumerated in the model.

Expressions

There are three distinct types of expressions in SimBiology:

* Reactions

* Rules
+ Events
Reactions

A reaction describes a process such as a transformation, transport, or binding/unbinding
process between reactants and products.

Example reactions include:

Creatine + ATP <-> ADP + phosphocreatine
cytoplasm.speciesA -> nucleus.speciesA

Rules

A rule is a class of mathematical expressions that include differential equations, initial
assignments, repeated assignments, and algebraic constraints.



What is a Model?

For example, you can use a rule to:
+  Specify values for model components that are required for comparison with
experimental data. For example, specify the active fraction of total protein.

+ Assign values to model components based on the values of other components in the
model. For example, define a parameter's value as being proportional to a species or
another parameter.

* Define mass balance equations.

* For species, use rate rules as an alternative to the differential rate expression
generated from reactions.

Events

An event describes an instantaneous change in the value of a quantity (compartment,
species, parameter). The discrete transition occurs when a user-specified condition
becomes true. The condition can be a specific time or a specific time-independent
condition.

For example, you can use an event to:

+ Activate or deactivate a specific species (activator or inhibitor species)
* Change a parameter value based on external signals
* Change reaction rates in response to addition or removal of a species

* Replicate an experimental condition, such as the addition or removal of an activating
agent (such as a drug) to or from a sample

Quantities

SimBiology uses three types of quantities in models:
+ Compartments
*  Species

* Parameters
Compartments

A compartment defines a physically bounded region that contains species. A
compartment is characterized by a capacity expressed as volume, area, or length. A
compartment can also contain other compartments, which adds hierarchy to a model.
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For example, a compartment named cytoplasm might contain a compartment named
nucleus, thereby partitioning species based on their location.

Species

A species characterizes the state of the biological system by representing the amount (or
concentration) present in the system for that entity. Examples of species are DNA, ATP,
and creatine. Species' amounts (or concentrations) vary during a simulation as a result
of their participation in reactions, differential equations, and events. Therefore, species
represent the dynamical state of a biological system.

Parameters

A parameter is a quantity that is referred to by expressions. It typically remains constant
during a simulation. For example, parameters are used as rate constants in reactions.

You can configure a parameter to vary during a simulation. This is useful, for example,
to model the change in a reaction rate given the concentration of a catalyst or a change in
temperature.

Model Hierarchy

Note the following conditions imposed on quantities in the model hierarchy:

* Models must contain at least one compartment.
* A compartment can contain one or more compartments.

* Species are always contained within a compartment.

More About
“Representing a Model and Model Modifiers” on page 1-6



Model Modifiers

Model Modifiers

In this section...

“Variants” on page 1-5

“Doses” on page 1-5

In addition to expressions and quantities, which are model components, SimBiology
provides the following constructs (or objects) that you use to modify or perturb a model
from its base configuration.

Variants

A variants is a collection of quantities (compartments, species, and/or parameters)

that you can use to alter a model's initial or base configuration, which is easier than
individually modifying each quantity separately. For example, assuming that a different
set of parameter values characterizes differences between wild type and mutant strains,
you can use a variant to group parameter values indicative of these strains. You apply
variants to a model to evaluate the model behavior under "variant" conditions. Note
that the model's original configuration is only temporarily altered, for example during a
simulation.

For example, you can use a variant to compare:

+  Two different species, such as human versus mouse
+  Wild type versus mutant strains

+ Different experimental conditions

Doses

A dose is used to increment the amount (or concentration) of a species exogenously. For
example, you can use a dose to model the instantaneous supply of a drug regimen during
the simulation of a model. For details, see “Doses” on page 1-42.



1 Modeling

Representing a Model and Model Modifiers

1-6

In this section...

“Construct a Simple Model” on page 1-6
“SimBiology Objects” on page 1-6

Construct a Simple Model

The following code shows how to construct a simple model consisting of one compartment,
two species, a parameter, and a reaction:

% Create a model named example

model = sbiomodel ("example®);

% Add a compartment named cell to model

compartment = addcompartment(model, “cell®);

% Add two species, A and B, to the cell compartment
species_1 = addspecies(compartment, "A%);

species_2 = addspecies(compartment, "B");

% Add a parameter, K1, to model with a value of 3
parameter = addparameter(model, "K1", 3);

% Add the reaction A -> B to the model

reaction = addreaction(model, "A -> B", "ReactionRate”, "K1%);

SimBiology Objects

In SimBiology, models and their components are implemented as objects. For example,
in the previous code, model is a model object composed of a compartment object,
compartment, which in turn is composed of species, parameter and reaction objects.
These objects have properties and methods associated with them, which you use to access
and configure them. Use the get method to list the property values of an object. Use the
set method to change the property values of an object.

SimBiology objects are handle objects, which has implications for how they behave
during copy operations. In particular, handle objects do not behave as arrays of doubles

do in MATLAB®. To learn how handle objects affect copy operations, see Copying Objects
in the MATLAB Programming Fundamentals documentation.

More About
* “Model Object” on page 1-8




Representing a Model and Model Modifiers

“Objects Representing Quantities” on page 1-9
“Compartment Object” on page 1-10

“Species Object” on page 1-11

“Parameter Object” on page 1-15

“Objects Representing Expressions” on page 1-16
“Definitions and Evaluations of Reactions” on page 1-17
“Definitions and Evaluations of Rules” on page 1-23
“Event Object” on page 1-30

“Objects Representing Model Modifiers” on page 1-39
“Variant Object” on page 1-40

“Doses” on page 1-42
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Model Object

A model object represents a model and is composed of quantities and expressions.
Quantities represent the state variables in the system while expressions depict the
relationships between quantities and therefore describe the dynamics of the model.

1-8

For information about...

See...

Creating a model

sbiomodel

Methods and properties of a model

model object

Removing models from MATLAB clear
Workspace
Deleting models sbhioreset




Objects Representing Quantities

Obijects Representing Quantities

The following objects represent quantities in a model:

+ Compartment
+ Species

*  Parameter

Scoping of Compartments, Species, and Parameters

Scoping refers to which object another object is contained in. Scoping affects
compartments, species, parameters, and rules.

* A compartment is scoped to (or contained in) a model or another compartment.

+ Although a model can contain multiple compartments, each species is scoped to only
one compartment.

* A parameter is scoped to a model or a kinetic law.
Naming of Compartments and Species

Note the following when naming objects within a model:

+ Compartment names must be unique within a model.

More About

+ “Compartment Object” on page 1-10
+ “Species Object” on page 1-11
+  “Parameter Object” on page 1-15

1-9
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Compartment Object

1-10

A compartment object represents a compartment, which is a physically isolated
region. It lets you associate pools of species to that physically isolated region. It has a

capacity associated with it.

All models must contain at least one compartment. A compartment is scoped to a
model or another compartment. A compartment contains one or more species. Each
compartment within a model must have a unique name.

You can add a compartment explicitly (using the addcompartment method) or add a
reaction (using the addreaction method) to create a compartment.

For information about...

See...

Creating and adding a compartment to a
model

addcompartment, addreaction

Methods and properties of a compartment

compartment object




Species Obiject

Species Object

A species object represents a species, which is the amount of a chemical or entity
that participates in reactions. A species is always scoped to a compartment.

When adding species to a model with multiple compartments, you must specify qualified
names, using compartmentName.speciesName. For example, nucleus .DNA denotes the
species DNA in the compartment nucleus.

For information about... See...

Creating and adding a species to a model |addspecies

Methods and properties of a species species object

How Species Amounts Change During Simulations

The amount of a species can remain constant or vary during the simulation of a model.
Use the following properties of a species object to specify how the amount of a
species changes during a simulation:

+ ConstantAmount property — When set to true, the species amount does not change
during a simulation. The species can be part of a reaction or rule, but the reaction or
rule cannot change its amount. When set to false, the species amount is determined
by a reaction or a rule, but not both.

* BoundaryCondition property — When set to true, the species amount is either
constant or determined by a rule, but not determined by a chemical reaction. In other
words, the simulation does not create a differential rate term from the reactions for
this species, even if it is in a reaction, but it can have a differential rate term created
from a rule.

Keeping a Species Amount Unchanged

Set ConstantAmount to true and BoundaryCondition to false for a constant
species, whose amount is not changed by a reaction or rule. In this case, the species acts
like a parameter. It cannot be in a reaction, and it cannot be varied by a rule.

ConstantAmount

BoundaryCondition

Reaction

Rule

Changed By

True

False

No

No

Never

1-11
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Example — Species E is not part of the reaction, but it is part of the reaction rate
equation. E is constant and could be replaced with the constant Vm = k2*E.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Changing a Species Amount with a Reaction or Rule

Set ConstantAmount to False and BoundaryCondition to false for a species whose
amount is changed by a reaction or rule, but not both.

ConstantAmount BoundaryCondition Reaction Rule Changed By
False False Yes No Reaction
False False No Yes Rule

Example 1 — Species A is part of a reaction, and it is in the reaction rate equation. The
species amount or concentration is determined by the reaction. This is the most common
category of a species. A differential rate equation for the species is created from the
reactions.

reaction: A -> B
reaction rate: k*A

Example 2 — Species E is not part of the reaction, but it is in the reaction rate equation.
E varies with another reaction or rule.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Example 3 — Species G is not part of a reaction, and it is not in a rate equation. G
varies with an algebraic rule or rate rule.

rate rule: dG/dt = k

Changing a Species Amount with a Rule When Species is Part of a
Reaction
Set ConstantAmount to False and BoundaryCondition to true for a species whose

amount is changed by a rule, but the species is also part of a reaction, and a differential
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rate term from the reaction is not created. The amount of the species changes with the
rule, and a differential rate term is created from the rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By

False

True Yes Yes Rule

Example 1 — Species A is not changed by the rate equation, but changes according to
a rate rule. However, A could be in the rate equation that changes other species in the
reaction.

reaction: A -> B
reaction rate: k1l or k1*A
rate rule: dA/dt = k2*A (solution is A = k2*t)
(enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according to an
algebraic rule.

reaction: A -> B + C
reaction rate: k or k*A
algebraic rule: A = 2*C
(enter in SimBiology as 2*C - A)

Keeping a Species Amount Unchanged When Species is Part of a
Reaction that Adds or Removes Mass

Set ConstantAmount to false and BoundaryCondition to true for a constant species
that is part of a reaction, but a differential rate term is not created from the reaction. The
differential rate term is created from a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By

True

True Yes No Never

During simulation, a differential rate equation is not created for the species. dSpecies/
dt does not exist.

Example 1 — Aisa infinite source and its amount does not change. B increases
with a zero order rate (k and k*A are both constants). A source refers to a species where
mass 1s added to the system.

reaction: A -> B
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reaction rate: k or k*A

Example 2 — B decreases with a first-order rate, but Ais an infinite Sink and its
amount does not change. A Sink refers to a species where mass is subtracted from the
system.

reaction: B -> A
reaction rate: k*B

Example 3 — The null species is a reserved species name that can act as a source or a
sink.

reaction: null -> B
reaction rate: k

reaction: B -> null
reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values, but they are
not in the reaction rate equation.

reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)
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Parameter Object

A parameter object represents a parameter, which is a value that typically remains
constant during a simulation. For example, you use parameters to define reaction rate
constants. In some circumstances it is useful to allow parameter values to vary. In these
cases you can specify a parameter as nonconstant.

For information about... See...

Creating and adding a parameter to a addparameter
model

Methods and properties of a parameter parameter object

Scope of Parameter Objects
When you create a parameter, you scope it to either a model or a reaction.
Parameters Scoped to a Model

Parameters scoped to a model can be used (or referenced) by any expression (reaction,
rule, or event) in the model.

Parameters Scoped to a Reaction

Parameters scoped to a reaction can be used (or referenced) by only the reaction rate
expression.
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Obijects Representing Expressions

The following objects represent expressions in a model:

* Reaction object

*  KineticLaw object
*  Rule object

+  Event object

When Reactions, Rules, and Events Specify Parameters

Reactions, rules and events can specify one or more parameters. A parameter is scoped a
model or a kinetic law. Note the following when using a reaction, rule, or event to specify
a parameter:

+ When a reaction specifies a parameter, the parameter can be scoped to the model
or the kinetic law that is part of that reaction. If more than one reaction specifies
the same parameter, the parameter must be scoped to the model. If two parameters
have the same name, one at the model level and the other at the kinetic law level,
the software uses the parameter at the kinetic law level for the reaction rate that
specifies the parameter.

* When a rule specifies a parameter, the parameter must be scoped to the model.

*  When an event specifies a parameter, the parameter must be scoped to the model.

For more information, see “Scope of Parameter Objects” on page 1-15.

More About

+  “Definitions and Evaluations of Reactions” on page 1-17
+ “Definitions and Evaluations of Rules” on page 1-23
+ “Event Object” on page 1-30

+ “Create and Simulate a Model with a Custom Function” on page 1-48
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Definitions and Evaluations of Reactions

A reaction is a mathematical expression that describe a transformation, transport, or
binding process that changes one or more species. Typically, an amount of a species is

changed through a reaction.

In SimBiology, a reaction is represented by a reaction object, which has the

following properties.

Reaction property — Mathematical expression that describes the reaction

ReactionRate property — Mathematical expression that defines the rate at which

the reactants combine to form products. You can provide this information explicitly or
use the KineticlLaw property to populate this information.

KineticlLaw property — Object that specifies a rate law that defines the type of

reaction rate. Examples include Henri-Michaelis-Menten and Mass Action. The object
also specifies species objects, or parameter objects. This property is optional.
It serves as a template for a reaction rate and provides a convenient way of applying
a specific rate law to multiple reactions. If you use this property, it automatically

populates the ReactionRate property.

A reaction is scoped to a model.

For information about...

See...

Creating and adding a reaction to a model

addreaction

Methods and properties of a reaction

reaction object

Creating and adding a kinetic law to a
reaction

addkineticlaw

Methods and properties of a kinetic law

KineticLaw object

Writing Reaction Expressions

Use standard chemistry reaction notation to create the mathematical expression for a
reaction (Reaction property of a reaction object).

Following are rules for writing reaction expressions:

* Stoichiometry values must be positive.

Use spaces before and after species names and stoichiometric values.
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+ If a stoichiometry value is not specified, it is assumed to be 1.

+ In a model with a single compartment, specify species using speciesName. In
a model with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

*  Enclose names with non-alphanumeric characters (including spaces) in brackets.

* Reactions can be reversible (<->) or irreversible (->).

Examples of reaction expressions include:

Creatine + ATP <-> ADP + phosphocreatine

glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H20
cytoplasm.A -> nucleus.A

[compartment 1].[species A] -> [compartment 2].[species A]

Note: Same species can be used multiple times in the list of reactions or products. The
expression "2 A" is equivalent to "A + A",

Writing Reaction Rate Expressions Explicitly

Use any valid MATLAB code to create the mathematical expression for a reaction
rate (ReactionRate property of a reaction object). The reaction rate can specify
compartments, species, or parameters.

Following are rules for writing reaction rate expressions:

* The expression must be a single MATLAB statement that returns a scalar.

+ In a model with a single compartment, specify species using speciesName. In
a model with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

+ Enclose names with non-alphanumeric characters (including spaces) in brackets.

* Do not end the reaction rate expression with any of the following:

Semicolon
« Comma

+ Comment text preceded by %
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* Line continuations indicated by . . .
For example, if you have the following reaction expression:
Creatine + ATP <-> ADP + phosphocreatine
and the reaction follows Mass Action kinetics, then the reaction rate expression would be:

K*Creatine*ATP - Krev*ADP*phosphocreatine

Tip If your reaction rate expression is not continuous and differentiable, see “Using
Events to Address Discontinuities in Rule and Reaction Rate Expressions” on page
1-38 before simulating your model.

Creating Reaction Rate Expressions Using Kinetic Law Objects

A KineticLaw object is scoped to a reaction and specifies:

+ A rate law that defines the type of reaction rate. Examples include Henri-Michaelis-
Menten and Mass Action.

* species and parameters

A KineticLaw object serves as a template for a reaction rate and provides a
convenient way of applying a specific rate law to multiple reactions. You can use this
object to create a reaction rate, which populates the ReactionRate property of the
reaction object.

For example, if you create a KineticLaw object that specifies Henri-Michaelis-Menten
for the KineticLawName, species S, and parameters Vm and Km, the reaction rate law is:

V,, *S/(K,, +S)

Then if you create a reaction object that specifies the previous KineticLaw object
and species the following reaction expression:

A ->B

with Vm = Va and Km = Ka and S = A, then the reaction rate equation is:

Va*A/(Ka + A)
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Examples of Creating Reaction Rates

Example of Creating a Zero-Order Reaction

With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

reaction:
reaction rate:
species:
parameters:

null -> P

k
=
k

mole/second
0 mole
1 mole/second

Note: When specifying a nul I species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following

result:

RE=TEY

File Edt Wiew Insert Tools Deskiop Window Help ¥
10 T T
reaction: null -> P
gl reaction rate:v=k §
iy}
E
S st -« P i
Py
o
L4t J
ak}
&
2 L 4
O 1 1 1 1
0 2 4 B g 10

Time (seconds)

Zero-Order Mass Action Kinetics
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Note: If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

Examples of Creating Other Reactions

For examples of creating other reaction rates, see “Create Reaction Rates” on page
A-2.

How Reaction Rates Are Evaluated
Reaction Rate Dimensions

When calculating species fluxes, SimBiology must determine whether you specified
reaction rates in dimensions of amount/time or concentration/time. When all
compartments in a model have a capacity of one unit, amount and concentration are
numerically equivalent.

For all other models, the numerical results of the simulation depend on which
interpretation SimBiology selects. SimBiology determines whether a reaction rate

1s in dimensions of amount/time or concentration/time via dimensional analysis of
ReactionRate expressions. This minimum level of dimensional analysis always occurs,
even when DimensionalAnalysis and UnitConversion are off.

The DefaultSpeciesDimension property defines the dimensions of species appearing
in a reaction rate. SimBiology infers the dimensions of parameters appearing in a
reaction rate from their ValueUnits property. If any parameters appearing in a reaction
rate expression do not have units, SimBiology interprets the reaction rate in dimensions
of amount/time. Therefore, the only way to specify that a reaction rate has dimensions of
concentration/time is to assign appropriate units to all parameters.

Reactions Spanning Multiple Compartments

Specify reactions that span compartments using the syntax
compartmentiName.species1Name —> compartment2Name.species2Name. The
reaction rate dimensions must resolve to amount/time when:

* Species span multiple compartments.

+ The reaction is reversible mass action and the products are in multiple compartments.
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Examples

Consider a reaction a + b —> c. Using mass action kinetics, the reaction rate is

k*a*b, where K is the rate constant of the reaction. If you specify that initial amounts

of aand b are 0.01 molarity and 0.005 molarity respectively, then the reaction
rate is in concentration/time (and units of molarity/second) if the units of k are

1/ (molarity*second). If you specify k with another equivalent unit definition, for
example, 1/((moles/liter)*second), SimBiology checks whether the physical
quantities match. If the physical quantities do not match, you see an error and the model
is not simulated.

If, in the previous example, you specify that initial amounts of a and b are

0.01 and 0.005 respectively, without specifying units, SimBiology checks

whether Defaul tSpeciesDimension is substance or concentration. If
DefaultSpeciesDimension is concentration, and you set units on the rate constant
such that the reaction rate dimensions resolve to concentration/time, SimBiology

scales the species amounts for compartment capacity, and returns the species values in
concentration.

If you specify initial amounts of a and b as 0.01 molarity and 0.005 mole
respectively, include the volume scaling for b in the reaction rate expression. Include
volume scaling in the rate constant, and set the units of the rate constant accordingly (1/
(mole*second) for concentration/time, or 1/(molarity*second) for amount/time).

Viewing Equations for Reactions

You can view the system of equations that SimBiology creates when you build a model
using reaction expressions. For details, see “View Model Equations” on page 1-56.

More About

“Create and Simulate a Model with a Custom Function” on page 1-48
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Definitions and Evaluations of Rules

In this section...

“Overview” on page 1-23

“Initial Assignment” on page 1-23

“Repeated Assignment” on page 1-24

“Algebraic Rules” on page 1-24

“Repeated Assignment vs. Algebraic Rules” on page 1-25

“Rate Rules” on page 1-25

“Writing Rule Expressions” on page 1-25

“Considerations When Imposing Constraints” on page 1-26

“Conservation of Amounts When Simulation Time = 0 and Time > 0” on page 1-26

“Examples” on page 1-28

Overview

Rules are mathematical expressions that allow you to define or modify model quantities,
namely compartment capacity, species amount, or parameter value.

Rules can take the form of initial assignments, assignments during the course of a
simulation (repeated assignments), algebraic relationships, or differential equations (rate
rules). Details of each type of rule are described next.

Initial Assignment

An initial assignment rule lets you specify the initial value of a model quantity as a
numeric value or as a function of other model quantities. It is evaluated once at the
beginning of a simulation.

An initial assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, you could write an initial assignment rule to
set the initial amount of species?2 to be proportional to speciesl as species2 = k *
speciesl where K is a constant parameter.

Initial assignments are evaluated in the order in which they occur in the model. Note
that their effects can change when you reorder them.
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Repeated Assignment

A repeated assignment rule lets you specify the value of a quantity as a numeric value
or as a function of other quantities repeatedly during the simulation. It is evaluated at
every time step, which are determined by the solver during the simulation process.

A repeated assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, to repeatedly assign the value of 50 to species
X throughout the simulation, define the repeated assignment rule as x = 100.

Repeated assignments are reordered automatically and evaluated as a set of
simultaneous constraints. Thus it is not possible to create circular sets of assignments
suchasa = b + landb = a + 1.

Algebraic Rules

An algebraic rule lets you specify mathematical constraints on one or more model
quantities that must hold during a simulation. It is evaluated continuously during a
simulation.

An algebraic rule takes the form O = Expression, and the rule is specified as

the Expression. For example, if you have a mass conservation equation such as
species_total = speciesl + species2, write the corresponding algebraic rule as
speciesl + species2 - species_total.

However, repeated assignment rules are mathematically equivalent to algebraic
rules, but result in exact solutions instead of approximated solutions. Therefore, it
is recommended that you use repeated assignment rules instead of algebraic rules
whenever possible. Use algebraic rules only when:

* You cannot analytically solve the equations to get a closed-form solution. For example,
there is no closed-form solution for x4 + ax”3 + bx”2 + cx + k = 0 whereas
the closed-form solution for kx — ¢ = Ois X = c/k.

* You have multiple equations with multiple unknowns, and they could be inconvenient
to solve.

Tip If you use an algebraic or rate rule to vary the value of a parameter or compartment
during the simulation, make sure the ConstantValue property of the parameter or
ConstantCapacity of the compartment is set to False.
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Repeated Assignment vs. Algebraic Rules

Repeated assignment rules are mathematically equivalent to algebraic rules, but result
in exact solutions. However, algebraic rules are solved numerically, and the accuracy
depends on the error tolerances specified in the simulation settings. In addition, there
are several advantages to repeated assignment rules such as better computational
performance, more accurate results since no rules have to be solved numerically (hence
no approximations), and sensitivity analysis support.

Tip

+ If you can analytically solve for a variable, use a repeated assignment rule instead of
an algebraic rule.

* In repeated assignment rules, the constrained variable is explicitly defined as the left-
hand side, whereas in algebraic rules it is inferred from the degrees of freedom in the
system of equations. See also “Considerations When Imposing Constraints” on page
1-26.

Rate Rules

A rate rule represents a differential equation and lets you specify the time derivative of a
model quantity. It is evaluated continuously during a simulation.

. dVariable . L . . .
A rate rule is represented as —a = Expression | which is expressed in SimBiology as

Variable = Expression. For example, if you have a differential equation for species x,

d
d—j=k(}’+2),write therateruleas: x = k * (y + 2).

For examples of rate rules, see “Create Rate Rules” on page B-2.

Writing Rule Expressions
Use MATLAB syntax to write a mathematical expression for a rule. Note that no

semicolon or comma is needed at the end of a rule expression. If your algebraic, repeated
assignment, or rate rule expression is not continuous or differentiable, see “Using Events
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to Address Discontinuities in Rule and Reaction Rate Expressions” on page 1-38
before simulating your model.

Considerations When Imposing Constraints

Suppose you have a species y whose amount is determined by the equationy = m * X
- c. In SimBiology, the algebraic rule to describe this constraint is writtenasm * X -
c - y. If you want to use this rule to determine the value of y, then m, X, and ¢ must
be variables or constants whose values are known or determined by other equations.
Therefore, you must ensure that the system of equations is not overconstrained or
underconstrained. For instance, if you have more equations than unknowns, then the
system is overconstrained. Conversely, if you have more unknowns than the equations,
then the system is underconstrained.

Tip The behavior of an underconstrained system could be fixed by adding additional rules
or by setting the ConstantValue or ConstantCapacity or ConstantAmount property
of some of the components in the model.

Conservation of Amounts When Simulation Time = 0 and Time > 0

During a simulation (i.e., at simulation time > 0), if there are any changes to the volume
of a compartment where the species reside, SimBiology conserves species amounts rather
than concentrations.

At the beginning of a simulation (i.e., at time = 0), SimBiology evaluates the initial
assignment rules one after another based on the order they appear in the model rather
than as a set of mathematical constraints to be analyzed together. More specifically, at
time = 0, SimBiology:

1 Initializes variables for species, compartments, and parameters using the
InitialAmount, Capacity, and Value properties.

2 Updates the variables by evaluating initial assignment rules in the order they
appear, thus not conserving species amounts if the compartment’s volume changes.

3 Updates the variables by evaluating repeated assignment rules as a set of
constraints that conserve species amounts when the compartment’s volume changes.

At time > 0, SimBiology:
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Updates the variables by evaluating repeated assignment rules as a set of constraints
that conserve species amounts when the compartment’s volume changes.

SimBiology defines a compartment’s volume before evaluating repeated assignments, and
if you have a repeated assignment rule or an event that changes the volume and depends
on time (either explicitly or implicitly), then you will see the effect of conservation of
species amount(s) at time > 0.

lllustration of Conservation of Amounts

Consider the following example that illustrates such conservation of amounts. Suppose
there is a one-compartment model with a drug that degrades according to the mass
action kinetics with the forward reaction rate K. In order to distinguish the amount and
concentration units, the drug is represented in two different species: one in an amount
unit (milligram) and another one in a concentration unit (milligram/liter).

Compartment, Species, and Parameter Initial Values

cell (compartment) 1.0 liter

Amount_A (drug A in amount units) 0.0 milligram
Concentration_A (drug A in 100.0 milligram/liter
concentration units)

k (forward rate parameter) 0.1 hour

Here is an initial assignment, repeated assignment, and event as they appear in the
model.

Rules and Event Formula

Initial assignment cell = 2.0

Repeated assignment Amount_A = Concentration_A * cell

Event Trigger: time >= 5; EventFcns: cell
= 4.0

The initial compartment volume is doubled at time = 0 by the initial assignment, and
doubled again at time >= 5 by the event.

The model is simulated, and the final results are shown in the following States versus
Time figure.
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States

States versus Time
QDD T T T T T T T

Concentration_a
Arnount_A

180 -

160 - -

140 -

1201 -

At time = 0, the volume of the cell is doubled to 2.0 liters via the initial assignment, and
consequently the amount of drug A becomes 200 milligram as defined by the repeated
assignment. But the concentration does not change and is still 100 milligram/liter. This
illustrates that the amount is not conserved at time = 0. However, at time >= 5, the
volume of the cell becomes 5.0 liter and causes a drop in the concentration (milligram/
liter) to conserve the amount (milligram) of drug A. Thus this example illustrates that at
time > 0 the amount (instead of the concentration) of drug A is conserved at all times, but
not at time = 0.

Examples

“Create Rate Rules” on page B-2.
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“Create and Simulate a Model with a Custom Function” on page 1-48.
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In this section...

“Overview” on page 1-30

“Event Triggers” on page 1-30

“Event Functions” on page 1-31

“Specifying Event Triggers” on page 1-31

“Specifying Event Functions” on page 1-33

“Simulation Solvers for Models Containing Events” on page 1-34
“How Events Are Evaluated” on page 1-34

“Evaluation of Simultaneous Events” on page 1-36
“Evaluation of Multiple Event Functions” on page 1-37
“When One Event Triggers Another Event” on page 1-37
“Cyclical Events” on page 1-38

“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on
page 1-38

Overview

In SimBiology, an event is a discrete transition in value of a quantity or expression in a
model. This discrete transition occurs when a customized condition becomes true. The
condition can be a specific time and/or a time-independent condition. Such conditions are
defined in an Event object.

Event Triggers

An event object has a Trigger property that specifies a condition that must be true to
trigger the event to execute.

Typical event triggers are:

* A specific simulation time — Specify that the event must change the amounts or
values of species or parameters. For example, at time = 5 s, increase the amount of an
inhibitor species above the threshold to inhibit a given reaction.

* In response to state or changes in the system — Change amounts/values of certain
species/parameters in response to events that are not tied to any specific time. For
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example, when species A reaches an amount of 30 molecules, double the value of
reaction rate constant k. Or when temperature reaches 42 °C, inhibit a particular
reaction by setting its reaction rate to zero.

Note: Currently, events cannot be triggered at time = 0. However, you can get the event
to happen just after time = 0 by using "time > timeSmall” as the event trigger where
timeSmall can be a tiny fraction of a second such as 1.0 picosecond.

Event Functions

An event has an EventFcns property that specifies what occurs when the event is
triggered. Event functions can range from simple to complex. For example, an event
function might:

+ Change the values of compartments, species, or parameters.

*  Double the value of a reaction rate constant.

Specifying Event Triggers

The Trigger property of an event specifies a condition that must become true for an
event to execute. Typically, the condition uses a combination of relational and logical
operators to build a trigger expression.

A trigger can contain the keyword time and relational operators to trigger an event
that occurs at a specific time during the simulation. For example, time >= X. For more
information see the Trigger property.

Use MATLAB syntax to write expressions for event triggers. Note that the expression
must be a single MATLAB statement that returns a logical. No semicolon or comma

1s needed at the end of an expression. MATLAB uses specific operator precedence to
evaluate trigger expressions. Precedence levels determine the order in which MATLAB
evaluates an expression. Within each precedence level, operators have equal precedence
and are evaluated from left to right. To find more information on how relational and
logical operators are evaluated see “Relational Operations” and “Logical Operations” in
the MATLAB Programming Fundamentals documentation.

Some examples of triggers are:
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Trigger Explanation
"(time >= 5) && (speciesA < Execute the event when the following condition
1000)* becomes true:

Time is greater than or equal to 5, and
speciesA is less than 1000.

Tip Using a && (instead of &) evaluates the
first part of the expression for whether the
statement is true or false, and skips evaluating
the second statement if this statement is false.

"(time >= 5) || (speciesA <
1000)*

Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, or if
speciesA is less than 1000.

(sl >= 10.0) || (time >= 250)
&& (s2 < 5.0E17)"

Execute the event when the following condition
becomes true:

Species, sl is greater than or equal to 10.0
or, time is greater than or equal to 250 and
species S2 1s less than 5.0E17.

Because of operator precedence, the expression
is treated as if it were " (sl >=10.0) ||
((time>= 250) && (s2<5.0E17))".

Thus, it is always a good idea to use
parenthesis to explicitly specify the intended
precedence of the statements.

"((s1 >= 10.0) || (time >=
250)) && (s2 < 5.0E17)"

Execute the event when the following condition
becomes true:

Species sl is greater than or equal to 10 or
time is greater than or equal to 250, and
species S2 is less than 5.0E17.
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Trigger Explanation
"((s1l >= 5000.0) && (time >= Execute the event when the following condition
250)) |1 (s2 < 5.0E17)*" becomes true:

Species sl is greater than or equal to 5000
and time is greater than or equal to 250, or
species S2 is less than 5.0E17.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger X > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as Xx/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does
not have to have the same unit as the constant x0, but must be dimensionally consistent
with it. For example, the unit of x can be picomole/liter instead of mole/liter.

Specifying Event Functions

The EventFcns property of an event specifies what occurs when the event is triggered.
You can use an event function to change the value of a compartment, species, or
parameter, or you can specify complex tasks by calling a custom function or script.

Use MATLAB syntax to define expressions for event functions. The expression must
be a single MATLAB assignment statement that includes =, or a cell array of such
statements. No semicolon or comma is needed at the end of the expression.

Following are rules for writing expressions for event functions:

EventFcn Explanation

"speciesA = speciesB* When the event is executed, set the amount of
speciesA equal to that of speciesB.

"k = k/2* When the event is executed, halve the value of the

rate constant k.

{"speciesA = speciesB", "k = |When the event is executed, set the amount of
k/72"} speciesA equal to that of speciesB, and halve
the value of the rate constant k.
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EventFen Explanation

*kC = my func(A,B,kC)* When the event is executed, call the custom
function my_func(). This function takes three
arguments: The first two arguments are the
current amounts of two species (A and B) during
simulation and the third argument is the current
value of a parameter, KC. The function returns the
modified value of KC as its output.

Simulation Solvers for Models Containing Events

To simulate models containing events, use a deterministic (ODE or SUNDIALS) solver
or the stochastic ssa solver. Other stochastic solvers do not support events. For more
information, see “Choosing a Simulation Solver” on page 3-5.

How Events Are Evaluated

Consider the example of a simple event where you specify that at 4s, you want to assign
a value of 10 to species A.
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At time = 4 s the trigger becomes true and the event executes. In the previous figure
assuming that O is false and 1 is true, when the trigger becomes true, the amount of
species A is set to 10. In theory, with a perfect solver, the event would be executed exactly
at time = 4.00 s. In practice there is a very minute delay (for example you might
notice that the event is executed at time = 4.00001 s). Thus, you must specify that
the trigger can become true at or after 4s, which is time >= 4 s,

Trigger EventFcn
time >= 4 A =10

The point at which the trigger becomes true is called a rising edge. SimBiology events
execute the EventFcn only at rising edges.

The trigger is evaluated at every time step to check whether the condition specified in
the trigger transitions from false to true. The solver detects and tracks falling edges,
which is when the trigger becomes false, so if another rising edge is encountered, the
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event is reexecuted. If a trigger is already true before a simulation starts, then the event
does not execute at the start of the simulation. The event is not executed until the solver
encounters a rising edge. Very rarely, the solver might miss a rising edge. An example
of this is when a rising edge follows very quickly after a falling edge, and the step size
results in the solver skipping the transition point.

If the trigger becomes true exactly at the stop time of the simulation, the event might or
might not execute. If you want the event to execute, increase the stop time.

Note: Since the rising edge is instantaneous and changes the system state, there are two
values for the state at the same time. The simulation data thus contains the state before
and after the event, but both points are at the same time value. This leads to multiple
values of the system state at a single instant in time.

Evaluation of Simultaneous Events

When two or more trigger conditions simultaneously become true, the solver executes the
events sequentially in the order in which they are listed in the model. You can reorder
events using the reorder method. For example, consider this case.

Event Number |Trigger EventFcn
1 SpeciesA >= 4 SpeciesB = 10
2 SpeciesC >= 15 SpeciesB = 25

The solver tries to find the rising edge for these events within a certain level of tolerance.
If this results in both events occurring simultaneously, then the value of SpeciesB after
the time step in which these two events occur, will be 25. If you reorder the events to
reverse the event order, then the value of SpeciesB after the time step in which these
two events occur, will be 10.

Consider an example in which you include event functions that change model
components in a dependent fashion. For example, the event function in Event 2,
stipulates that SpeciesB takes the value of SpeciesC.

Event Number |Trigger EventFcn
1 SpeciesA >= 4 SpeciesC = 10
2 time >= 15 SpeciesB = SpeciesC
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Event 1 and Event 2 might or might not occur simultaneously.

+ If Event 1 and Event 2 do not occur simultaneously, when Event 2 is triggered,
SpeciesB is assigned the value that SpeciesC has at the time of the event trigger.

+ If Event 1 and Event 2 occur simultaneously, the solver executes Event 1 first, then
executes Event 2. In this example, if SpeciesC = 15 when the events are triggered,
after the events are executed, SpeciesC = 10 and SpeciesB = 10.

Evaluation of Multiple Event Functions

Consider an event function in which you specify that the value of a model component
(SpeciesB) depends on the value of model component (SpeciesA), but SpeciesA also is
changed by the event function.

Trigger EventFcn

time >= 4 {"SpeciesA = 10, SpeciesB = SpeciesA"}

The solver stores the value of SpeciesA at the rising edge and before any event
functions are executed and uses this stored value to assign SpeciesB its value. So in
this example if SpeciesA = 15 at the time the event is triggered, after the event is
executed, SpeciesA = 10 and SpeciesB = 15.

When One Event Triggers Another Event

In the next example, Event 1 includes an expression in the event function that causes
Event 2 to be triggered (assuming that SpeciesA has amount less than 5 when Event 1
1s executed).

Event Number |Trigger EventFcn
1 time >= 5 {"SpeciesA = 10, SpeciesB = 5"}
2 SpeciesA >= 5 SpeciesC = SpeciesB

When Event 1 is triggered, the solver evaluates and executes Event 1 with the result that
SpeciesA = 10 and SpeciesB = 5. Now, the trigger for Event 2 becomes true and the
solver executes the event function for Event 2. Thus, SpeciesC = 5 at the end of this
event execution.

You can thus have event cascades of arbitrary length, for example, Event 1 triggers
Event 2, which in turn triggers Event 3, and so on.
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Cyclical Events

In some situations, a series of events can trigger a cascade that becomes cyclical. Once
you trigger a cyclical set of events, the only way to stop the simulation is by pressing Ctrl
+C. You lose any data acquired in the current simulation. Here is an example of cyclical
events. This example assumes that Species B <= 4 at the start of the cycle.

Event Number |Trigger EventFcn

1 SpeciesA > 10 {SpeciesB = 5, SpeciesC = 1"}
2 SpeciesB > 4 {SpeciesC = 10, SpeciesA = 1"}
3 SpeciesC > 9 {SpeciesA = 15, SpeciesB = 1"}

Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions

The solvers provided with SimBiology gives inaccurate results when the following
expressions are not continuous and differentiable:

* Repeated assignment rule

+ Algebraic rule

* Rate rule

* Reaction rate

Either ensure that the previous expressions are continuous and differentiable or use

events to reset the solver at the discontinuity, as described in “Deterministic Simulation
of a Model Containing a Discontinuity”.




Objects Representing Model Modifiers

Obijects Representing Model Modifiers

Variant and dose objects can modify or perturb a model from its base configuration.

For an example of creating and using an event in a model, see .

More About

+ “Variant Object” on page 1-40
* “Doses” on page 1-42
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Variant Object
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A variant object represents a variant, which is an alternate value for a compartment,
species, or parameter in a model. You can apply this alternate value during a simulation,
which lets you evaluate model behavior with a different value, without having to search
and replace the value, or create an additional model with the new value.

You can use a variant to store an alternate value for any of the following:

+  Compartment Capacity property
* Species InitialAmount property
* Parameter Value property

The alternate value applies temporarily, only during a simulation, and does not alter

the model's values permanently. If you determine that the values in a variant accurately
define your model, you can permanently replace the values in your model with the values
stored in the variant object by using the commit method.

Creating and Simulating with Variants

1 Create a variant object and add it to a model using the addvariant method.

2 (Optional) Set the Active property of the variant object to true if you always
want the variant to be applied before simulating the model.

3 Enter the model and variant object as input arguments to sbiosimulate. This
applies the variant only for the current simulation and supersedes any active variant
objects on the model.

or

If you followed step 2, simply call sbiosimulate on the model object to apply the
variant.

For an example of creating and using a variant in a model, see “Simulate Biological
Variability of the Yeast G Protein Cycle Using the Wild-Type and Mutant Strains” on
page 1-46.

For information about... See...

Creating and adding a variant to a model |addvariant




Variant Object

For information about... See...

Creating a stand-alone variant sbhiovariant
Methods and properties of a variant Variant object
Appending contents to variants addcontent
Replacing model values permanently with |commit

values from a variant

Simulating with Multiple Variants in a Model

When you use multiple variants during a simulation, and there are duplicate
specifications for a property's value, the last occurrence for the property value in the
array of variants is used during simulation. You can find out which variant is applied
last by looking at the indices of the variant objects stored on the model.

If you specify variants as arguments to sbiosimulate, this applies the variants for the
current simulation in the order that they are specified, and supersedes any active variant
objects on the model.

Similarly, in the variant contents (Content property), if there are duplicate
specifications for a property's value, the last occurrence for the property in the contents is
used during simulation.
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Doses

Doses let you increase the amount of a species in a SimBiology model during simulation,
either at specific time points or predefined time intervals. For example, you can use a
dose object to model an instantaneous supply of a drug regimen during the simulation of
a model. The increase in the amount of a species occurs only during simulation and does
not alter the species' value permanently (that is, the value in the model is not changed).

Representing Doses

In SimBiology, doses are represented by two types of dose objects.

* ScheduleDose object — Applies a dose to a single species at a predefined list of
time points

+ RepeatDose object — Repeatedly applies a dose to a single species at regularly
spaced time intervals

SimBiology dose objects support the following common dosing types.

Dosing Description

Strategy

Bolus Instantaneous increase in the amount of drug in the compartment
Infusion Increase of the drug at a fixed rate over a period of time, which is

calculated from the dose amount

Zero-order Increase of the drug at a fixed rate calculated from the dose amount and
dose duration

First-order Increase of the drug via the first-order absorption kinetics

Creating Dose Objects

There are two common ways to create dose objects. One way is to create a dose object
using the sbiodose or adddose function. Another is to create dose objects automatically
from data containing dosing information. This first approach is useful when you want

to explore different dosing strategies through simulation. The second approach is useful
if you already have a data set with dosing information and plan to use such dosing
information in your simulation or parameter estimation.
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Create a Dose Object Using sbiodose or adddose

sbiodose creates a standalone dose object that is not attached to any model. You can
apply a standalone dose to different models during simulation by specifying it as a dosing
argument for sbiosimulate or attach it to any model using adddose. You can also use
it during parameter estimation using sbiofit or sbiofitmixed.

adddose creates a dose object and adds it to a model. Use this function if you want to
attach a dose object to a model. You must set its Active property to true to apply the
dose to the model during simulation.

The following examples show how to add a dose object to a one-compartment PK model
using sbiodose and set up the dose properties manually. Alternatively, you can use the
built-in PK models with different dosing types. For details, see “Create Pharmacokinetic

Models” on page 4-24.

Dosing Strategy

Example

Dose Obiject Properties Configuration

Bolus

“Add a Series of Bolus Doses to a
One-Compartment Model”

To create a bolus dose, set

the Amount and TargetName
properties of a dose object. You
might also need to configure other
properties such as RepeatCount,
Interval or scheduled dose times
(Time) if you are applying a series
of doses. For details on these
properties, see ScheduleDose
object and RepeatDose object

Infusion “Add an Infusion Dose to a One- Unlike a bolus dose, you also need
Compartment Model” to specify the infusion rate (Rate
property) of the dose object.
Zero-order “Increase Drug Concentration in a |Unlike a bolus dose, you need

One-Compartment Model via Zero-

order Dosing”

to additionally create a zero-
order duration parameter and
specify the duration parameter
name (DurationParameterName
property) of the dose object.
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Dosing Strategy |Example Dose Object Properties Configuration
First-order “Increase Drug Concentration in a |Unlike bolus, infusion, or zero-
One-Compartment Model via First- |order, you need to create an
order Dosing” additional reaction for the drug
absorption.

Create Dose Objects from Dosing Data

If you already have dosing data for one or more subjects or patients that you would like
to use in your parameter estimation, first create a groupedData object from your data
set. Then use createDoses function to automatically generate an array of dose objects
that you can specify as an input argument for shiofit or sbiofitmixed for fitting. For
a complete workflow see “Modeling the Population Pharmacokinetics of Phenobarbital in
Neonates”.

Simulation Solvers for Models Containing Doses

To simulate models containing doses, use a deterministic (ODE or SUNDIALS) solver.
Stochastic solvers do not support doses. For details, see “Choosing a Simulation Solver”
on page 3-5.

See Also

adddose | RepeatDose object | sbhiodose | ScheduleDose object




Scoping

Scoping

In SimBiology, scoping refers to which object another object is contained in. For example,
a compartment is scoped to (or contained in) a model or another compartment, a species
is scoped to a compartment, and a parameter is scoped to a model or a kinetic law.

Suppose, you have added a parameter k1 to a model, then the parameter is scoped to the
model. But if you add it to a kinetic law, then it is scoped to the kinectic law only.

1-45



1 Modeling

Simulate Biological Variability of the Yeast G Protein Cycle Using
the Wild-Type and Mutant Strains

1-46

This example shows how to create and apply a variant to the G protein model of a wild-
type strain. The variant represents a parameter value for the G protein model of a
mutant strain. Thus, when you simulate the model without applying the variant, you see
results for the wild type strain, and when you simulate the model with the variant, you
see results for the mutant strain. This example uses the model described in Model of the
Yeast Heterotrimeric G Protein Cycle.

The value of the parameter KGd is 0. 11 for the wild-type strain and 0.004 for the
mutant strain. To represent the mutant strain, you will store an alternate value of 0.004
for the kGd parameter in a variant object, and apply this variant when simulating the
model.

For information on variants, see “Variant Object” on page 1-40.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

You can create a variant of the original model by specifying a different parameter value
for the kGd parameter of the model. First, add a variant to the m1 model object.

vl = addvariant(ml, "mutant_strain®);

Next, add a parameter kGd with a value of 0.004 to the variant object v1.
addcontent(vl,{"parameter®, “"kGd", "Value®,0.004});

Simulate the wild type model.

[t,x,names] = sbiosimulate(ml);

Simulate the mutant strain model by applying the variant.
[tV,xV,names] = sbiosimulate(ml,vl);

Plot and compare the simulated results.

subplot(1,2,1)
plot(t,x);
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legend(names);
xlabel ("Time");
ylabel ("Amount®);
title(C"Wild Type®);

subplot(1,2,2)
plot(tV,xV);
legend(names);

xlabel ("Time");

ylabel ("Amount®);
title("Mutant Strain®);
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Create and Simulate a Model with a Custom Function
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In this section...

“Overview” on page 1-48

“Create a Custom Function” on page 1-50

“Load the Example Model” on page 1-51

“Add the Custom Function to the Example Model” on page 1-51
“Define a Rule to Change Parameter Value” on page 1-51

“Add an Event to Reset the Solver at a Discontinuity” on page 1-52

“Simulate the Modified Model” on page 1-52

Overview
Prerequisites for the Example

This example assumes you have a working knowledge of:

+ MATLAB desktop
+ Creating and saving MATLAB programs

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric G Protein

Cycle.

This table shows the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each reaction. For reversible reactions, the forward

rate parameter is listed first.

No. |Name Reaction’ Rate Parameters
Receptor-ligand interaction L +R <->RL kRL, KRLm

2 Heterotrimeric G protein Gd + Gbg -> G kGl
formation

3 G protein activation RL + G -> Ga + Gbg + RL kGa




Create and Simulate a Model with a Custom Function

No. |Name Reaction’ Rate Parameters

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 Receptor-ligand degradation |[RL -> null kRD1

6 G protein inactivation Ga -> Gd kGd

! Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

Assumptions of the Example
This example assumes that:

* An inhibitor (Inhib species) slows the inactivation of the active G protein (reaction 6
above, Ga —> Gd).

* The variation in the amount of inhibitor (Inhib species) is defined in a custom
function, inhibvalex.

* The inhibitor (Inhib species) affects the reaction by changing the amount of rate
parameter KGd.

About the Example

This example shows how to create and call a custom function in a SimBiology expression.
Specifically, it shows how to use a custom function in a rule expression.

About Using Custom Functions in SimBiology Expressions
You can use custom functions in:

* Reaction rate expressions (ReactionRate property)
*  Rule expressions (Rule property)

+ Event expressions (EventFcns property or Trigger property)
The requirements for using custom functions in SimBiology expressions are:

*  Create a custom function. For more information, see function.

*  Change the current folder to the folder containing your custom MATLAB file. Do
this by using the cd command or by using the Current Folder field in the MATLAB
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desktop toolbar. Alternatively, add the folder containing your file to the search path.
Do this by using the addpath command or see “Change Folders on the Search Path”.

Call the custom function in a SimBiology reaction, rule, or event expression.

Tip If your rule or reaction rate expression is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on
page 1-38 before simulating your model.

Create a Custom Function

The following procedure creates a custom function, inhibvalex, which lets you specify
how the inhibitor amount changes over time. The inputs are time, the initial amount
of inhibitor, and a parameter that governs the amount of inhibitor. The output of the
function is the amount of inhibitor.

1-50

In the MATLAB desktop, select File > New > Script, to open the MATLAB Editor.

Copy and paste the following function declaration:

% inhibvalex.m
function Cp = inhibvalex(t, Cpo, kel)

% This function takes the input arguments t, Cpo, and kel

% and returns the value of the inhibitor Cp.

% You can later specify the input arguments in a

% SimBiology rule expression.

% For example in the rule expression, specify:

% t as time (a keyword recognized as simulation time),

% Cpo as a parameter that represents the initial amount of inhibitor,
% and kel as a parameter that governs the amount of inhibitor.

if t < 400

Cp = Cpo*exp(-kel*(t));
else

Cp = Cpo*exp(-kel*(t-400));
end

Save the file (name the file inhibvalex.m) in a directory that is on the MATLAB
search path, or to a directory that you can access.

If the location of the file is not on the MATLAB search path, change the working
directory to the file location.
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Load the Example Model

Load the gprotein example project, which includes the variable m1, a model object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Add the Custom Function to the Example Model

The following procedure creates a rule expression that calls the custom function,
inhibvalex, and specifies the three input values to this function.

1 Add a repeated assignment rule to the model that specifies the three input values to
the custom function, inhibvalex:

rulel = addrule(ml, "“Inhib = inhibvalex(time, Cpo, Kel)",...
"repeatedAssignment®);

The time input is a SimBiology keyword recognized as simulation time

2 Create the two parameters used by the rulel rule and assign values to them:

addparameter(ml, "Cpo®, 250);
addparameter(ml, °“Kel®, 0.01);

pl
p2

3 Create the species used by the rulel rule:

sl = addspecies(ml.Compartments, "“Inhib");

Define a Rule to Change Parameter Value

The value of rate parameter KGd is affected by the amount of inhibitor present in
the system. Add a rule to the model to describe this action, but first change the
ConstantValue property of the parameter kGd so that it can be varied by a rule.

1 Change the ConstantValue property of the kGd parameter to False.

p3 = sbioselect(ml, "Type®", “parameter®, "Name®, “"kGd");
p3.ConstantValue = false;

2 Add arepeated assignment rule to the model to define how the kGd parameter is
affected by the Inhib species.
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rule2 = addrule(ml, “kGd = 1/Inhib*", “repeatedAssignment®);

Add an Event to Reset the Solver at a Discontinuity

The custom function, inhibvalex, introduces a discontinuity in the model when time =
400. To ensure accurate simulation results, add an event to the model to reset the solver
at the time of the discontinuity. Set the event to trigger at the time of the discontinuity
(time = 400). The event does not need to modify the model, so create an event function
that multiplies a species value by 1.

addevent(ml, "time>=400", "G=1*G");

Simulate the Modified Model

1 Configure the simulation settings (configset object) for the m1 model object to
log all states during the simulation.

cs = getconfigset(ml);
cs.RuntimeOptions.StatesToLog = "all”;
2 Simulate the model.

simDataObj = sbiosimulate(ml);
3 Plot the results.

sbioplot(simDataObj);
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<1017 States versus Time EI---AII Runs
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The plot does not show the species of interest due to the wide range in species
amounts/concentrations.
Plot only the species of interest. Ga.

GaSimDataObj = selectbyname(simDataObj,"Ga");
sbioplot(GaSimbataObj);
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States versus Time = [#] All Runs
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Notice the change in the profile of species Ga at time = 400 seconds (simulation
time). This is the time when the inhibitor amount is changed to reflect the re-

addition of inhibitor to the model.
5 Plot only the inhibitor (Inhib species).

InhibSimDataObj = selectbyname(simDataObj, " Inhib");
sbioplot(InhibSimDataObj)
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See Also
addpath | cd | function

More About

“Change Folders on the Search Path”
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View Model Equations

You can view the system of equations that SimBiology creates when you build a model
using reactions, rules, events, variants, and doses. Viewing model equations is useful for:

Publishing purposes

Model debugging

For details, see the getequations method of a Model object.
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+ “Overview of Structural Analysis” on page 2-2

+ “Model Verification” on page 2-3

+ “Verifying a Model” on page 2-5

+ “Conserved Moiety Determination” on page 2-6

+ “Determining Conserved Moieties” on page 2-9

* “Determining the Adjacency Matrix for a Model” on page 2-12

* “Determining the Stoichiometry Matrix for a Model” on page 2-14

+ “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 2-17
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Overview of Structural Analysis

2-2

Structural analyses let you verify and investigate the structure of your model and its
quantities and expressions before actually simulating the model. These static inspections
help you to:

*  Confirm the model is ready for simulation.

Better understand the relationships between quantities and expressions in the model.
For more information, see:

+ “Model Verification” on page 2-3

* “Conserved Moiety Determination” on page 2-6

* “Determining the Adjacency Matrix for a Model” on page 2-12

* “Determining the Stoichiometry Matrix for a Model” on page 2-14
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Model Verification

In this section...

“What is Model Verification?” on page 2-3

“When to Verify a Model” on page 2-3

“Verifying That a Model Has No Warnings or Errors” on page 2-4

“More About” on page 2-4

What is Model Verification?

SimBiology has functionality that helps you find and fix warnings that you might need
to be aware of, and errors that would prevent you from simulating and analyzing your
model.

Model verification checks many aspects of the model including:

*  Model structure
+ Validity of mathematical expressions
*  Dimensional analysis

*  Unit conversion issues

When to Verify a Model

You can check your model for warnings and errors at any time when constructing or
working with your model. For example:
+ Verify your model during construction to ensure that the model is complete.

* Verify the model after changing simulation settings, dimensional analysis settings, or
unit conversion settings.

Analyses such as simulation, scanning, and parameter fitting automatically verify a
model.

Tip Repeatedly running a task using a different variant or setting a different value for
the InitialAmount property of a species, the Capacity property of a compartment, or
the Value property of a parameter, generates warnings only the first time you simulate
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a model. Use the verification functionality described in this section to display warnings
again.

Verifying That a Model Has No Warnings or Errors
Use the verify method to see a list of warnings and errors in your model.

Use the sbiolastwarning and sbiolasterror functions to return the last warning
and last error encountered during verification.

More About

For an example of verifying a model, see “Verifying a Model” on page 2-5.



Verifying a Model

Verifying a Model

1

Create a model with a reaction that references K1, an undefined parameter:

% Create a model named example

model = sbiomodel("example®);

% Add a compartment named cell to model

compartment = addcompartment(model, "cell™);

% Add two species, A and B, to the cell compartment

species_1 = addspecies(compartment, "A%);

species_2 = addspecies(compartment, "B");

% Add the reaction A -> B to the model

reaction = addreaction(model, "A -> B", "ReactionRate”, "K17");

Verify the model to check for warnings and errors:

verify(model)

??? --> Error reported from Expression Validation:

The name "K1*® in reaction "A -> B" does not refer to any in-scope species,
parameters, or compartments.

Address the error by defining the parameter K1:

% Add a parameter, K1, to the model with a value of 3
parameter = addparameter(model, "K1", 3);

Verify the model again:
verify(model)
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Conserved Moiety Determination

In this section...

“Introduction to Moiety Conservation” on page 2-6

“Algorithms for Conserved Cycle Calculations” on page 2-6

“More About” on page 2-8

Introduction to Moiety Conservation

Conserved moieties represent quantities that are conserved in a system, regardless of the
individual reaction rates.

Consider this simple network:

reaction 1: A -> B

reaction 2: B -> C

reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + Cis conserved
throughout the dynamic evolution of the system. This conservation is termed structural
because it depends only on the structure of the network, rather than on details such as
the kinetics of the reactions involved. In the context of systems biology, such a conserved
quantity is sometimes referred to as a conserved moiety. A typical, real-world example
of a conserved moiety is adenine in its various forms ATP, ADP, AMP, etc. Finding

and analyzing conserved moieties can yield insights into the structure and function

of a biological network. In addition, for the quantitative modeler, conserved moieties
represent dependencies that can be removed to reduce a system’s dimensionality, or
number of dynamic variables. In the previous simple network, in principle, it is only
necessary to calculate the time courses for A and B. After this is done, C is fixed by the
conservation relation.

Algorithms for Conserved Cycle Calculations

The sbioconsmoiety function analyzes conservation relationships in a model by
calculating a complete set of linear conservation relations for the species in the model
object.

sbioconsmoiety lets you specify one of three algorithms based on the nature of the
model and the required results:




Conserved Moiety Determination

* "gr°" — sbioconsmoiety uses an algorithm based on QR factorization. From a
numerical standpoint, this is the most efficient and reliable approach.

* "rreduce” — sbioconsmoiety uses an algorithm based on row reduction, which
yields better numbers for smaller models. This is the default.

+ "semipos” — sbioconsmoiety returns conservation relations in which all
the coefficients are greater than or equal to zero, permitting a more transparent
interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row
reduction or the semipositive algorithm may be preferable. For row reduction and

QR factorization, the number of conservation relations returned equals the row rank
degeneracy of the model object's stoichiometry matrix. The semipositive algorithm can
return a different number of relations. Mathematically speaking, this algorithm returns
a generating set of vectors for the space of semipositive conservation relations.

In some situations, you may be interested in the dimensional reduction of your model
via conservation relations. Recall the simple model, presented in “Introduction to

Moiety Conservation” on page 2-6, that contained the conserved cycle A + B + C.

Given A and B, C is determined by the conservation relation; the system can be thought
of as having only two dynamic variables rather than three. The " 1ink" algorithm
specification caters to this situation. In this case, sbioconsmoiety partitions the
species in the model into independent and dependent sets and calculates the dependence
of the dependent species on the independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank k, and suppose
that the rows of N are permuted (which is equivalent to permuting the species ordering)
so that the first k rows are linearly independent. The last n — k rows are then necessarily
dependent on the first k rows.

The matrix N can be split into the following independent and dependent parts,

N - (NR]
No
where R in the independent submatrix Ng denotes 'reduced'; the (n — K)-by-k link matrix
LO is defined so that Ny = LO*Ng. In other words, the link matrix gives the dependent

rows Np of the stoichiometry matrix, in terms of the independent rows Ng. Because each
row in the stoichiometry matrix corresponds to a species in the model, each row of the
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link matrix encodes how one dependent species is determined by the k independent
species.

More About

For examples of determining conserved moieties, see:

“Determining Conserved Moieties” on page 2-9

Finding Conserved Quantities in a Pathway Model
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Determining Conserved Moieties

1 Load the Goldbeter Mitotic Oscillator project, which includes the variable m1, a
model object:

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions

The m1 model object appears in the MATLAB Workspace.

2 Display the species information:

ml.Compartments.Species

SimBiology Species Array

Ind
1

©CoOoO~NOUPA~WN

10

ex: Compartment: Name: [Ini

unnamed C
unnamed M
unnamed Mplus
unnamed Mt
unnamed X
unnamed Xplus
unnamed Xt
unnamed Vi
unnamed V3
unnamed AA

3 Display the reaction information:

ml.Reactions

SimBiology Reaction Array

Index:

~N~NoOo o hWNPE

Reaction:

AA -> C

C -> AA

C+ X ->AA+ X
Mplus + C -> M + C

M -> Mplus
Xplus + M -> X + M
X -> Xplus

InitialAmountUnits:

4  Use the simplest form of the sbioconsmoiety function and display the results.
The default call to sbioconsmoiety, in which no algorithm is specified, uses an
algorithm based on row reduction.
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[g sp] = sbioconsmoiety(ml)

g:
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
sp =
cr
"
"Mplus*®
N
"Xplus*®
"AA"

The columns in g are labeled by the species sp. Thus the first row describes the
conserved relationship, M + Mplus. Notice that the third row indicates that the
species AA is conserved, which is because AA is constant (ConstantAmount = 1).

Call sbioconsmoiety again, this time specifying the semipositive algorithm to
explore conservation relations in the model. Also specify to return the conserved
moieties in a cell array of strings, instead of a matrix.

cons_rel = sbioconsmoiety(ml, "semipos®, "p~)
cons_rel =
"AA"

"X + Xplus*®
"M + Mplus*®

Use the "1ink" option to study the dependent and independent species.

[S1,SD,LO,NR,ND] = sbioconsmoiety(ml, "link");

Show the list of independent species:
Sl
SI =

Tob
e
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e
Show the list of dependent species:

sD

SD =
"Mplus*®
"Xplus*®
"AA"

Show the link matrix relating SD and S1 by converting the LO output from a sparse
matrix to a full matrix:

LO_full = full(LO)

LO_full =
0 -1.0000 0
0 0 -1.0000
0 0 0

Show the independent stoichiometry matrix, N; by converting the NR output from a
sparse matrix to a full matrix:

NR_full = full(NR)

NR_Full =
1 -1 -1 0 0 0 0
0 0 0 1 -1 0 0
0 0 0 0 0 1 -1

Show the dependent stoichiometry matrix, Np by converting the ND output from a
sparse matrix to a full matrix:

ND_full = Fful I(ND)

ND_full =
0 0 o -1 1 0 0
0 0 0 0 0o -1 1
0 0 0 0 0 0 0

2-11
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Determining the Adjacency Matrix for a Model
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In this section...

“What Is an Adjacency Matrix?” on page 2-12
“Retrieving an Adjacency Matrix for a Model” on page 2-12

What Is an Adjacency Matrix?

An adjacency matrix lets you easily determine:

* The reactants and products in a specific reaction in a model

+ The reactions that a specific species is part of, and whether the species is a reactant or
product in that reaction

An adjacency matrix is an N-by-N matrix, where N equals the total number of species
and reactions in a model. Each row corresponds to a species or reaction, and each column
corresponds to a species or reaction.

The matrix indicates which species and reactions are involved as reactants and products:
+ Reactants are represented in the matrix with a 1 at the appropriate location (row of

species, column of reaction). Reactants appear above the diagonal.

*  Products are represented in the matrix with a 1 at the appropriate location (row of
reaction, column of species). Products appear below the diagonal.

+ All other locations in the matrix contain a O.

For example, if a model object contains one reaction equal to A + B -> C and the
Name property of the reaction is R1, the adjacency matrix is:

1

0 W >

[cNeoNeoNei-
[eNeNeNoNv)
RPOOOO
OOrErL =X

Retrieving an Adjacency Matrix for a Model

Retrieve an adjacency matrix for a model by passing the model object as an input
argument to the getadjacencymatrix method.
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Read in m1, a model object, using sbmlimport:

ml = sbmlimport("lotka.xml");

Get the adjacency matrix for m1:

[M, Headings] = getadjacencymatrix(ml)

M =

G.D
G.2)
(6.3)
@.4
a.5)
2.5)
2.6)
@3.6)
G.7nD

Headings

X
y1®
y2r
"z

"Reactionl”
"Reaction2”
"Reaction3”

RPRRPRRRRRERR

Convert the adjacency matrix from a sparse matrix to a full matrix to more easily see
the relationships between species and reactions:

M_Full

M_Full

[eNeol NeolNeoNoNe]

ful 1 (M)

[Nl NeoNoNoNe]

el NeolNoNoNoNe]

POOOOOO

[cNeoNoNoNoN N ]

[cNoNeoNoN N Ne]

[cNeoNoNeol NeoNe]
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Determining the Stoichiometry Matrix for a Model
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In this section...

“What Is a Stoichiometry Matrix?” on page 2-14
“Retrieving a Stoichiometry Matrix for a Model” on page 2-15

What Is a Stoichiometry Matrix?

A stoichiometry matrix lets you easily determine:

The reactants and products in a specific reaction in a model, including the
stoichiometric value of the reactants and products

The reactions that a specific species is part of, and whether the species is a reactant or
product in that reaction

A stoichiometry matrix is an M-by-R matrix, where M equals the total number of species
in a model, and R equals the total number of reactions in a model. Each row corresponds
to a species, and each column corresponds to a reaction.

The matrix indicates which species and reactions are involved as reactants and products:

Reactants are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Reactants appear as negative
values.

Products are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Products appear as positive
values.

All other locations in the matrix contain a O.

For example, consider a model object containing two reactions. One reaction (named
Rl)isequalto2 A + B -> 3 C, and the other reaction (named R2) is equaltoB + 3 D
-> 4 A. The stoichiometry matrix is:

0O w>

R1 R2
-2 4
-1 -1
3 0
0 -3
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Retrieving a Stoichiometry Matrix for a Model

Retrieve a stoichiometry matrix for a model by passing the model object as an input
argument to the getstoichmatrix method.

1 Read in m1, a model object, using sbmlimport:

ml = sbmlimport("lotka.xml");
2 Get the stoichiometry matrix for m1:

[M,objSpecies,objReactions] = getstoichmatrix(ml)
M =

2.,1) 1
2,2 -1
@G.2) 1
@G.3) -1
4,3) 1

objSpecies

X
y1*
y2"
"z

objReactions =

"Reactionl”
"Reaction2*
"Reaction3*

3 Convert the stoichiometry matrix from a sparse matrix to a full matrix to more easily
see the relationships between species and reactions:

M_Full = Ffull(M)

M_full =
0 0 0
1 -1 0
0 1 -1
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Selecting Absolute Tolerance and Relative Tolerance for Simulation

In this section...

“Algorithm” on page 2-17
“Absolute Tolerance Scaling” on page 2-18

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy
of integration during simulation. Specifically, AbsoluteTolerance is used to control the
largest allowable absolute error at any step during simulation. It controls the error when
a solution is small. Intuitively, when the solution approaches 0, AbsoluteTolerance

1s the threshold below which you do not worry about the accuracy of the solution since

it is effectively 0. RelativeTolerance controls the relative error of a single step of the
integrator. Intuitively, it controls the number of significant digits in a solution, except

when it is smaller than the absolute tolerance, and —log, ( RelativeTolerance) is the

number of correct digits.

Algorithm

At each simulation step 1, the solver estimates the local error e in the state j of the
simulation. The solver reduces the size of time step i until the error of the state satisfies:

|e(i,j)| < max(RelativeTolerance # |y(i,j)|,AbsoluteTolerance (i,j))

Thus at state values of larger magnitude, the accuracy is determined by
RelativeTolerance. As the state values approach zero, the accuracy is controlled by
AbsoluteTolerance.

The correct choice of values for RelativeTolerance and AbsoluteTolerance varies
depending on the problem. The default values may work for first trials of the simulation.
As you adjust the tolerances, consider that there are trade-offs between speed and
accuracy:

+ If the simulation takes too long, you can increase (or loosen) the values of
RelativeTolerance and AbsoluteTollerance at the cost of some accuracy.

+ If the results seem inaccurate, you can decrease (or tighten) the relative tolerance
values by dividing with 10~, where N is a real positive number. But this tends to slow
down the solver.

2-17
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+ If the magnitude of the state values is high, you can decrease the relative tolerance to
get more accurate results.

Absolute Tolerance Scaling

How SimBiology uses AbsoluteTolerance to determine the error depends on
whether the AbsoluteToleranceScal ing property is enabled. By default,
AbsoluteToleranceScal ing is enabled which means each state has its own absolute
tolerance that may increase over the course of simulation:

AbsoluteTolerance(i, j) = CSAbsTol * Scale(i, )

CSAbsTol is the AbsoluteTolerance property defined in SolverOptions of the active
configuration set object.

For a state that has a nonzero initial value, the scale is the maximum magnitude over
the state, as seen over the simulation thus far:

Scale(i, j) = max(|y(1 Zi,j)|)

For a state that has an initial value of zero, the scale is estimated as the state value after
taking a trial step of size AbsoluteToleranceStepSize using the Euler method. Let
us call this value ye(j). Then:

Scale(i, j) = max(|[ye(j);y(2 : i,j)]|)
If an initial state is zero and has no dynamic at time = 0, then:
AbsoluteTolerance(i, j) = CSAbsTol

Doses, events, and initial assignment rules at simulation time = 0 are not considered
when calculating absolute tolerance scaling.

More About

. “Model Simulation” on page 3-3
. “Choosing a Simulation Solver” on page 3-5

. “Ordinary Differential Equations”
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“Simulation and Analysis” on page 3-2

“Model Simulation” on page 3-3

“Create and Simulate a Simple Model” on page 3-11

“Simulate the Yeast Heterotrimeric G Protein Cycle” on page 3-16
“Sensitivity Calculation” on page 3-21

“Calculate Sensitivities” on page 3-25

“Identify Important Network Components from an Apoptosis Model Using Sensitivity
Analysis” on page 3-29

“Perform a Parameter Scan” on page 3-34

“Nonlinear Mixed-Effects Modeling” on page 3-38
“Nonlinear Regression” on page 3-48

“Estimate Parameters of a G protein Model” on page 3-53

“Accelerating Model Simulations and Analyses” on page 3-65
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Simulation and Analysis

3-2

After creating models in SimBiology, you can simulate and analyze them.

Typical Workflow
To simulate a model, SimBiology:

1 Converts the model expressions and quantities to a system of differential equations.
2 Uses deterministic or stochastic solvers to numerically solve these equations.

3 Determines the changes in species amounts and parameter values over time.
For more information, see “Model Simulation” on page 3-3.

SimBiology also lets you analyze models. These analyses include a basic simulation of the
model as well as additional evaluations such as:

+  “Sensitivity Calculation” on page 3-21
+ “Perform a Parameter Scan” on page 3-34

Parameter estimation using “Nonlinear Regression” on page 3-48 and “Nonlinear
Mixed-Effects Modeling” on page 3-38
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Model Simulation

In this section...

“Simulating a Model” on page 3-3

“Plotting Simulation Results” on page 3-4

“Interpreting Simulation Results” on page 3-4

“Configuring Stop Time and Other Simulation Settings” on page 3-4
“Choosing a Simulation Solver” on page 3-5

“SUNDIALS Solvers” on page 3-5

“Stochastic Solvers” on page 3-6

“Ensemble Runs of Stochastic Simulations” on page 3-10

“See Also” on page 3-10

Simulating a Model

Simulate a model by providing the model object as an input argument to the
sbiosimulate function.

When you simulate a model, you can return results (time points, state data, and state
names) in two forms:

* Three separate arrays

* One SimData object

A SimData object also includes metadata such as the types and names for the logged
states, the configuration set used during simulation, and the date of the simulation. It is
a convenient way of keeping time data, state data, and associated metadata together. A
SimData object has associated properties and methods, which you can use to access
and manipulate the data.

For more information on simulating a model, see “Simulate the Yeast Heterotrimeric G
Protein Cycle” on page 3-16.

3-3



3 Simulation and Analysis

Plotting Simulation Results

If you return time and state data from a simulation in three output arguments, you
can use these arguments as inputs to the plot function to view your results. For more
information, see sbiosimulate.

If you return time and state data from a simulation in a SimData object, you can use
the SimData object as an input to the sbioplot function to view your results.

For more information on plotting simulation results, see “Simulate the Yeast
Heterotrimeric G Protein Cycle” on page 3-16.

Interpreting Simulation Results

After running a simulation, you may see negative amounts or concentrations for species
in the results plot or data array. These negative values can be either:

+ Slightly negative due to numerical noise introduced by the simulation process. In this
case, you can interpret these values as 0.

+ Significantly negative due to the dynamics in your model not being physical, that
is, the dynamics in the system are driving a particular species to be negative. In
this case, examine your reaction rate expressions to ensure they implement correct
dynamics.

Configuring Stop Time and Other Simulation Settings

A model has a configuration set (Configset object) associated with it to control the
simulation. You can edit the properties of a Configset object to control all aspects of
the simulation, including:

+  Stop time (StopTime, MaximumNumberOfLogs, and MaximumWal IClock properties)
*  Time units (TimeUnits property)

* Solver and error tolerances (SolverType and SolverOptions properties)

+ Maximum time step size (MaxStep property)

* Data to record (RuntimeOptions property)

*  Frequency of data recording (OutputTimes and LogDecimation properties)

+ Sensitivity analysis (SensitivityAnalysisOptions and SolverOptions
properties)
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* Dimensional analysis and unit conversion (Compi leOptions property)

To view the Configset object, provide the model object as an input argument to
the getconfigset method.

To edit the properties of a Configset object, use the set method.

For more information on viewing and editing the stop time and other simulation settings,
see “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 3-16.

Choosing a Simulation Solver

To simulate a model, the SimBiology software converts a model to a system of differential
equations. It then uses a solver function to compute solutions for these equations at
different time intervals, giving the model's states and outputs over a span of time.

Available solvers are:

* ODE Solvers — These include Nonstiff Deterministic Solvers and Stiff Deterministic
Solvers. The solver functions implement numerical integration methods for solving
initial value problems for ordinary differential equations (ODEs). Beginning at the
initial time with initial conditions, they step through the time interval, computing a
solution at each time step. If the solution for a time step satisfies the solver's error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the solver
shrinks the step size and tries again. For more information, see “ODE Solvers” in the
MATLAB Mathematics documentation.

+ SUNDIALS Solvers — At a fundamental level the core algorithms for the
SUNDIALS solvers are similar to those for some of the solvers in the MATLAB
ODE suite and work as described above in ODE Solvers. For more information, see
“SUNDIALS Solvers” on page 3-5.

+ Stochastic Solvers — Use with models containing a small number of molecules.
Stochastic solvers include stochastic simulation algorithm, explicit tau-leaping
algorithm, and implicit tau-leaping algorithm. For more information, see “Stochastic
Solvers” on page 3-6.

SUNDIALS Solvers

SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers) are part
of a freely available third-party package developed at Lawrence Livermore National
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Laboratory. All other ODE solvers used for simulation of SimBiology models, such as
ode45 and odel5s, are part of the MATLAB ODE suite.

When you specify sundials for the solver, the software chooses one of two SUNDIALS
solvers, CVODE or IDA, as appropriate for your model:

+ CVODE is a solver for systems of ODEs, both nonstiff and stiff. This is used when a
model has no algebraic rules.

+ IDA is a differential-algebraic equation (DAE) solver, used when one or more
algebraic rules are present.

For more information on the SUNDIALS solvers, see http://www.1Inl_gov/casc/
sundials/description/description._html.

Stochastic Solvers

* “When to Use Stochastic Solvers” on page 3-6

* “Model Prerequisites for Simulating with a Stochastic Solver” on page 3-6
+ “What Happens During a Stochastic Simulation?” on page 3-7

+  “Stochastic Simulation Algorithm (SSA)” on page 3-7

+ “Explicit Tau-Leaping Algorithm” on page 3-8

*  “Implicit Tau-Leaping Algorithm” on page 3-8

+ “More About” on page 3-9

+ “References” on page 3-9

When to Use Stochastic Solvers

The stochastic simulation algorithms provide a practical method for simulating reactions
that are stochastic in nature. Models with a small number of molecules can realistically
be simulated stochastically, that is, allowing the results to contain an element of
probability, unlike a deterministic solution.

Model Prerequisites for Simulating with a Stochastic Solver
Model prerequisites include:

+ All reactions in the model must have their KineticLaw property set to MassAction.

+ If your model contains events, you can simulate using the stochastic ssa solver. Other
stochastic solvers do not support events.
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*  Your model must not contain doses. No stochastic solvers support doses.

Additionally, if you perform an individual or population fitting on a model whose
configset object specifies a stochastic solver and options, be aware that during the
fitting SimBiology temporarily changes:

+ SolverType property to the default solver of odel5s

+ SolverOptions property to the options last configured for a deterministic solver
What Happens During a Stochastic Simulation?
During a stochastic simulation of a model, the software ignores any rate, assignment, or

algebraic rules if present in the model. Depending on the model, stochastic simulations
can require more computation time than deterministic simulations.

Tip When simulating a model using a stochastic solver, you can increase the
LogDecimation property of the configset object to record fewer data points and
decrease run time.

Stochastic Simulation Algorithm (SSA)

The Chemical Master Equation (CME) describes the dynamics of a chemical system

in terms of the time evolution of probability distributions. Directly solving for this
distribution is impractical for most realistic problems. The stochastic simulation
algorithm (SSA) instead efficiently generates individual simulations that are consistent
with the CME, by simulating each reaction using its propensity function. Thus, analyzing
multiple stochastic simulations to determine the probability distribution is more efficient
than directly solving the CME.

Advantage
* This algorithm is exact.
Disadvantages

* Because this algorithm evaluates one reaction at a time, it might be too slow for
models with a large number of reactions.

+ If the number of molecules of any reactants is huge, it might take a long time to
complete the simulation.
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Explicit Tau-Leaping Algorithm

Because the stochastic simulation algorithm might be too slow for many practical
problems, this algorithm was designed to speed up the simulation at the cost of some
accuracy. The algorithm treats each reaction as being independent of the others. It
automatically chooses a time interval such that the relative change in the propensity
function for each reaction is less than your error tolerance. After selecting the time
interval, the algorithm computes the number of times each reaction occurs during
the time interval and makes the appropriate changes to the concentration of various
chemical species involved.

Advantages

* This algorithm can be orders of magnitude faster than the SSA.

* You can use this algorithm for large problems (if the problem is not numerically stiff).
Disadvantages

+ This algorithm sacrifices some accuracy for speed.
* This algorithm is not good for stiff models.

* You need to specify the error tolerance so that the resulting time steps are of the
order of the fastest time scale.

Implicit Tau-Leaping Algorithm

Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm is also an
approximate method of simulation designed to speed up the simulation at the cost of
some accuracy. It can handle numerically stiff problems better than the explicit tau-
leaping algorithm. For deterministic systems, a problem is said to be numerically stiff

if there are “fast” and “slow” time scales present in the system. For such problems,

the explicit tau-leaping method performs well only if it continues to take small time
steps that are of the order of the fastest time scale. The implicit tau-leaping method can
potentially take much larger steps and still be stable. The algorithm treats each reaction
as being independent of others. It automatically selects a time interval such that the
relative change in the propensity function for each reaction is less than the user-specified
error tolerance. After selecting a time interval, the algorithm computes the number of
times each reaction occurs during the time interval and makes the appropriate changes
to the concentration of various chemical species involved.

Advantages
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*  This algorithm can be much faster than the SSA. It is also usually faster than the
explicit tau-leaping algorithm.

* You can use this algorithm for large problems and also for numerically stiff problems.
* The total number of steps taken is usually less than the explicit-tau-leaping
algorithm.

Disadvantages

+ This algorithm sacrifices some accuracy for speed.

+ There is a higher computational burden for each step as compared to the explicit tau-
leaping algorithm. This leads to a larger CPU time per step.

+ This method often dampens perturbations of the slow manifold leading to a reduced
state variance about the mean.

More About

* “Ensemble Runs of Stochastic Simulations” on page 3-10

* Analysis of Stochastic Ensemble Data in SimBiology example
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Ensemble Runs of Stochastic Simulations

Because stochastic simulations rely on an element of probability, sequential runs produce
different results. Therefore, multiple stochastic runs are needed to determine the
probability distribution of the simulation results.

Ensemble runs perform multiple simulations of a model using a stochastic solver. They
let you gather data from multiple stochastic runs of the model so you can compare and
analyze fluctuations in the behavior of a model over repeated stochastic simulations.

Running Ensemble Simulations
The following functions let you perform and analyze ensemble runs at the command line:

+ sbioensemblerun — Perform a stochastic ensemble run of the MATLAB model
object.

+ sbioensembleplot — Show a 2-D distribution plot or a 3-D shaded plot of the time
varying distribution of one or more specified species.

+ sbioensemblestats — Get mean and variance as a function of time for all the
species in the model used to generate ensemble data by running sbioensemblerun.

See Also

For examples of simulating models, see:

+ “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 3-16

+ Analysis of Stochastic Ensemble Data in SimBiology example
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Create and Simulate a Simple Model

This example shows how to create and simulate a simple model of receptor-ligand
kinetics using the SimBiology Desktop.

Receptor-Ligand Kinetics

In this model, ligand L and receptor R species form receptor-ligand complexes through
reversible binding reactions. Using the mass action kinetics, the kinetic rate equation
for the rate of change in concentration of receptor-ligand complex can be defined as
dc _
dt
L, R, and C are the concentrations of ligand, receptor, and receptor-ligand complex
respectively. The objective of this simulation is to find the concentrations of all three
species (L, R, and C) as the reaction progresses given initial amounts of species and rate
constants.

ky, -L-R —kqﬁ» -C , where k,, and k. are forward and reverse rate constants,

kon

l * -
L R koff C (RLcomplex)
Create a Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Model > Create New Blank Model. Name the model as
ml when prompted.

Select Open > Diagram to open the diagram view.

Rename the compartment to cel I by double-clicking the text unnamed.

Drag and drop three species blocks “SPECiES 31 one reaction block Oreaction ;1 ide the
cell compartment.

Rename the species to L , R, and C as follows.
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o
Ii \I
L
E i
O O
reaction_-1 c
|’ \I

. R r

cell

Connect the Species and Reaction Blocks

To connect the ligand species block to the reaction block, press and hold the Ctrl key

(Windows® and Linux®) or the Option key (Macintosh®), click the L species block, and
drag the line to reaction_1. Similarly connect R to reaction_1 and reaction_1 to C.
L

2
L

cell

Update the Reaction Properties and Initial Amounts of the Reactant Species

Update the reaction_1 properties to set the reaction as a reversible reaction, select
mass action as kinetic law, and define the forward and reverse rate parameters:

Double-click the reaction_1 block to open the Reaction Properties dialog box.
*  On the Settings tab, select Reversible.
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* From KineticLaw drop-down list, select MassAction.

* Under Quantities Used by Reaction, enter kon as the name and 2.0EG6 as the
value for Forward Rate Parameter, and koff and 1E-4 for Reverse Rate

Parameter.

Update the initial amounts of reactant species by entering 5E-9 and 1E-8 as R and L
species values respectively. Click Close.

s

4 ModelBuilding: Reaction Properties @
Settings | Description | Appearance|
Mame:
reaction_1 Active
Reaction:
L+R<>C Reversible 33
KineticLaw: Expression:
:Massﬁxction v: ter)*(MassAction Species) - (Reverse Rate Parameter)*(MassAction Species)
Quantities Used by Reaction:
Kinetic Law Variable M... Type Scope Mame Value Units Cons... g*
:Forward Rate Param... v: parameter L+ R<->C kon 2000000.0 - g
:REVEFSE Rate Param... v: parameter L+ R<-»C leoff 1.0E-4 -
MassAction Species species cell R 5.0E-9 - (]
Masshction Species species cell C 0.0 - [
Masshction Species species cell L 1.0E-8 -
[ ReactionRate:
kon*L*R - koff*C

Close

Add a Simulation Task

On the Model tab, select Add Task > Simulate model. This opens a new window
called Task Editor, where you can edit and run the task. Given the previous initial
amounts and rate parameters, the reaction reaches a saturated state after 300 seconds.
Therefore, set the simulation stop time to 300 seconds instead of 10 seconds, which is
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the default stop time. To do so, expand the Task Stop Time section, select Use a Stop
Time specific to this task only, and enter 300.

Simulate the Model
To simulate the model, click the Run button.

Once the simulation is finished, the Live Plots section shows the States versus Time plot
for each species.
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Simulate the Yeast Heterotrimeric G Protein Cycle
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This example shows how to configure simulation settings, add an event to the model to
trigger a time-based change, save, and plot the simulation results. This example uses the
model described in “Model of the Yeast Heterotrimeric G Protein Cycle” on page C-17

to illustrate model simulation.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

Set the simulation solver to odel5s and set a stop time of 500 by editing the
SolverType and StopTime properties of the configset object associated with the
m1l model.

csObj = getconfigset(ml);

csObj -SolverType = "odelb5s”;
csObj .StopTime = 500;

Specify to log simulation results of all species.

csObj -RuntimeOptions.StatesToLog = "all”;

Suppose the amount of the ligand species L is 0 at the start of the simulation, but it
increases to a particular amount at time = 100. Use sbioselect to select the species
named L and set its initial amount to 0. Use addevent to set up the desired event.

speciesObj = sbioselect(ml, "Type", "species”, "Name","L");

speciesObj . InitialAmount = O;
evt = addevent(ml,“"time >= 100","L = 6.022E17%);

Simulate the model.
[t.x,names] = sbiosimulate(ml);

Simulate the simulation results. Notice that the species L amount increases when the
event is triggered at simulation time 100. Changes in other species do not show up in the
plot due to the wide range in species amounts.

plot(t,x);
legend(names)



Simulate the Yeast Heterotrimeric G Protein Cycle

Amount

xlabel ("Time");
ylabel ("Amount®);
? }‘-1D1?I T T T T T T T T
G
6 G 7
Ga
RL
L
° R
Gbg
4k — GaFrac|
ar 4
2r 4
J] - -
D i 1 1 1 1 i 1 1 1

1] 50 100 150 200 250 300 350 400 450 500
Time

To see the changes of other species, plot without the species L (the 5th species) data.

figure

plot(t,x(:,[1:4 6:8]));
legend(names{[1:4 6:8]}):
xlabel ("Time");

ylabel (*Amount®);
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Alternative to storing simulation data in separate outputs, such as t, X, and names
as above, you can store them all in a single SimData object. You can then use
selectbyname to extract arrays containing the simulation data of your interest.

simdata = shiosimulate(ml);
sbhioplot(simdata);
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States

= [&] &l Runs

L1017 States versus Time :
r F- [¥] Run 1

1] 100 200 300 400 500
Time

Expand Run 1 to see the names of species and parameter that are plotted.

simdata_noL = selectbyname(simdata, {"Ga","G","Gd","GaFrac”,"RL","R"});
sbioplot(simdata _nolL);
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Sensitivity Calculation

In this section...

“About Calculating Sensitivities” on page 3-21
“Model Requirements for Calculating Sensitivities” on page 3-21

“Calculate Sensitivities using sbiosimulate or SimFunctionSensitivity Object” on page
3-22

“References” on page 3-24

About Calculating Sensitivities

Calculating sensitivities lets you determine which species or parameter in a model

1s most sensitive to a specific condition (for example, a drug), defined by a species or
parameter. Calculating sensitivities calculates the time-dependent sensitivities of all
the species states with respect to species initial conditions and parameter values in the
model.

Thus, if a model has a species X, and two parameters y and z, the time-dependent
sensitivities of X with respect to each parameter value are the time-dependent
derivatives

ox ox

dy 0z

where, the numerator is the sensitivity output and the denominators are the sensitivity
inputs to sensitivity analysis.

For more information on the calculations performed, see “References” on page 3-24.

Model Requirements for Calculating Sensitivities

Sensitivity analysis is supported only by the ordinary differential equation (ODE)
solvers. The software calculates local sensitivities by combining the original ODE system
for a model with the auxiliary differential equations for the sensitivities. The additional
equations are derivatives of the original equations with respect to parameters. This
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method is sometimes called “forward sensitivity analysis” or “direct sensitivity analysis”.
This larger system of ODEs is solved simultaneously by the solver.

SimBiology sensitivity analysis uses “complex-step approximation” to calculate
derivatives of reaction rates. This technique yields accurate results for the vast majority
of typical reaction kinetics, which involve only simple mathematical operations and
functions. When a reaction rate involves a nonanalytic function, this technique can lead
to inaccurate results. In this case, either sensitivity analysis is disabled, or sensitivity
analysis warns you that the computed sensitivities may be inaccurate. An example of
such a nonanalytic function is the MATLAB function abs. If sensitivity analysis gives
questionable results on a model whose reaction rates contain unusual functions, you may
be running into limitations of the complex-step method. Contact MathWorks Technical
Support for additional information.

Note: Models containing the following active components do not support sensitivity
analysis:

* Nonconstant compartments

+ Algebraic rules

+ Events

Note: You can perform sensitivity analysis on a model containing repeated assignment
rules, but only if the repeated assignment rules do not determine species or parameters
used as inputs or outputs in sensitivity analysis.

Calculate Sensitivities using sbiosimulate or SimFunctionSensitivity Object

You can calculate sensitivities using sbiosimulate or the SimFunctionSensitivity
object.

Calculate using sbiosimulate

Set the following properties of the SolverOptions property of your configset object,
before running the sbiosimulate function:

+ SensitivityAnalysis — Set to true to calculate the time-dependent sensitivities
of all the species states defined by the Outputs property with respect to the initial
conditions of the species and the values of the parameters specified in Inputs.


http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

Sensitivity Calculation

* SensitivityAnalysisOptions — An object that holds the sensitivity analysis

options in the configuration set object. Properties of SensitivityAnalysisOptions
are:

+ Outputs — Specify the species and parameters for which you want to compute
the sensitivities. This is the numerator as described in “About Calculating
Sensitivities” on page 3-21.

Inputs — Specify the species and parameters with respect to which you want
to compute the sensitivities. Sensitivities are calculated with respect to the
InitialAmount property of the specified species. This is the denominator,
described in “About Calculating Sensitivities” on page 3-21.

Normal ization — Specify the normalization for the calculated sensitivities:

* "None" — No normalization

"Hal " — Normalization relative to the numerator (species output) only

* "Full®™ — Full dedimensionalization
For more information about normalization, see Normal ization.

After setting SolverOptions properties, calculate the sensitivities of a model by
providing the model object as an input argument to the sbiosimulate function.

The sbiosimulate function returns a SimData object containing the following
simulation data:

Time points, state data, state names, and sensitivity data

Metadata such as the types and names for the logged states, the configuration set
used during simulation, and the date of the simulation

A SimData object is a convenient way of keeping time data, state data, sensitivity
data, and associated metadata together. A SimData object has properties and methods
associated with it, which you can use to access and manipulate the data.

For illustrated examples, see:

+  “Calculate Sensitivities” on page 3-25

Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast
Heterotrimeric G Protein Cycle
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Calculate using SimFunctionSensitivity object

Create a SimFunctionSensitivity object using the createSimFunction
specifying the "SensitivityOutputs” and "Sensitivitylnputs”® name-value
pair arguments. Then execute the object. For an illustrated example, see “Calculate
Sensitivities Using SimFunctionSensitivity Object”.

References

Ingalls, B.P, and Sauro, H.M. (2003). Sensitivity analysis of stoichiometric networks:
an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol.
222(1), 23-36.
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the complex-step derivative approximation and algorithmic differentiation. AIAA Paper
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Martins, J.R.R.A., Kroo, I.M., and Alanso, J.J. (Jan. 2000). An automated method for
sensitivity analysis using complex variables. ATAA Paper 2000-0689.
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Calculate Sensitivities

In this section...

“Overview” on page 3-25
“Load and Configure the Model for Sensitivity Analysis” on page 3-26
“Perform Sensitivity Analysis” on page 3-26

“Extract and Plot Sensitivity Data” on page 3-27

Overview
About the Example Model

This example uses the model described in “Model of the Yeast Heterotrimeric G Protein
Cycle” on page C-17 to illustrate SimBiology sensitivity analysis options.

This table lists the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each mass action reaction. For reversible reactions,
the forward rate parameter is listed first.

No. |Name Reaction’ Rate Parameters
Receptor-ligand interaction L +R <->RL kRL, KRLm

2 Heterotrimeric G protein Gd + Gbg -> G kGl
formation
G protein activation RL + G -> Ga + Gbg + RL kGa
Receptor synthesis and R <-> null kRdo, kRs
degradation

5 Receptor-ligand degradation |[RL -> null kRD1

6 G protein inactivation Ga —> Gd kGd

! Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive

G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd

complex, Ga = active G-alpha-GTP

About the Example

Assume that you are calculating the sensitivity of species Ga with respect to every
parameter in the model. Thus, you want to calculate the time-dependent derivatives
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dGa) 9(Ga) 0(Ga) 9(Ga)

d(kRLm) 3 (kRL) 9(kG1)’ 3 (kGa)

Load and Configure the Model for Sensitivity Analysis

1

The gprotein_norules.sbproj project contains a model that represents the wild-
type strain (stored in variable ml).

sbioloadproject gprotein_norules ml
The options for sensitivity analysis are in the configuration set object. Get the
configuration set object from the model.

csObj = getconfigset(ml);
Use the sbioselect function, which lets you query by type, to retrieve the Ga
species from the model.

Ga = sbioselect(ml, "Type", "species”, "Where", "Name", "==","Ga");
Set the Outputs property of the SensitivityAnalysisOptions object to the Ga
species.

csObj .SensitivityAnalysisOptions.Outputs = Ga;
Use the sbioselect function, which lets you query by type, to retrieve all the
parameters from the model and store the vector in a variable, pif.

pif = sbioselect(ml, "Type", "parameter™);
Set the Inputs property of the SensitivityAnalysisOptions object to the pif
variable containing the parameters.

csObj .SensitivityAnalysisOptions. Inputs = pif;
Enable sensitivity analysis in the configuration set object (csObj) by setting the
SensitivityAnalysis option to true.

csObj .SolverOptions.SensitivityAnalysis = true;
Set the Normalization property of the SensitivityAnalysisOptions object to
perform "Ful I * normalization.

csObj .SensitivityAnalysisOptions.Normalization = "Full”;

Perform Sensitivity Analysis

Simulate the model and return the data to a SimData object:



Calculate Sensitivities

simDataObj = sbiosimulate(ml);

Extract and Plot Sensitivity Data

You can extract sensitivity results using the getsensmatrix method of a SimData
object. In this example, R is the sensitivity of the species Ga with respect to eight
parameters. This example shows how to compare the variation of sensitivity of Ga with
respect to various parameters, and find the parameters that affect Ga the most.

1

Extract sensitivity data in output variables T (time), R (sensitivity data for species
Ga), snames (names of the states specified for sensitivity analysis), and 1 facs
(names of the input factors used for sensitivity analysis):

[T, R, snames, ifacs] = getsensmatrix(simbataObj);

Because R is a 3-D array with dimensions corresponding to times, output factors, and
input factors, reshape R into columns of input factors to facilitate visualization and
plotting:

R2 = squeeze(R);
After extracting the data and reshaping the matrix, plot the data:

figure;

plot(T,R2);

title("Normalized Sensitivity of Ga With Respect To Various Parameters®);
xlabel ("Time (seconds)®);

ylabel ("Normalized Sensitivity of Ga");

leg = legend(ifacs, "Location”, "NorthEastOutside®);

set(leg, "Interpreter®, "nonev);
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Normalized Sensitivity of Ga With Respect To Various Parameters
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From the previous plot you can see that Ga is most sensitive to parameters kGd, kRs,
kRD1, and kGa. This suggests that the amounts of active G protein in the cell depends on
the rate of:

*  Receptor synthesis

+ Degradation of the receptor-ligand complex

* G protein activation

* G protein inactivation
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Identify Important Network Components from an Apoptosis Model
Using Sensitivity Analysis

This example shows how to identify important network components in an apoptosis
model using sensitivity analysis in the SimBiology desktop.

Apoptosis

An apoptosis is programmed cell death which is triggered by a wide variety of stimuli

or signaling events. When a cell encounters such signals, the level of Casp3* (activated
caspase3 protease) increases leading to an increased break down of proteins important
for cell survival. As a result, the cell dies. Research has shown that the level of Casp3*

is controlled by XIAP (X-linked inhibitor of apoptosis protein) that binds to Casp3* and
inactivates it so that Casp3* can no longer break down essential proteins of the cell, thus
effectively controlling the apoptosis [1], [2].

Sensitivity Analysis

Most biological networks are complex with several interactions and feedback loops, and
it might not be obvious to see which model component(s) should be controlled to have a
desired outcome such as a decrease in concentration of a particular species.

“Sensitivity Calculation” on page 3-21 lets you determine which species or parameters in
a model are most sensitive to a specific condition, such as a drug, thus providing insights
on important targets within the model.

Using SimBiology you can calculate time-dependent sensitivities of all the species

states with respect to species initial conditions and parameter values in the model. The
objective of this simulation is to find important network components in an apoptosis
model based on a hypothesis that the apoptosis signal is directly proportional to the level
of Casp3* in the cell. This example shows how to calculate the sensitivity of species
Casp3* with respect to every species in the model as follows:

d(Casp3*) d(Casp3*) 9(Casp3*)
d(Casp3) ’ 9(Casp8) ~ O(XIAP) ="~

Load the Apoptosis Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.
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On the Home tab, click Open and navigate to the folder matlabroot\help\toolbox
\simbio\examples, where matlabroot is the folder where MATLAB is installed, and
open the SimBiology project file named apoptosis.sbproj.

Note: If you are using a Macintosh platform, press Command+Shift+G in the File
Browser dialog box, and enter the full path to the folder.

By default, SimBiology opens the model in the Table Overview mode, where it shows
the model’s reactions and quantity in a tabular format. The model contains nine species,
nine parameters, and six reactions. To view the model graphically, select Open >
Diagram.

I
=
Casps* C\ Casp3
CaspB Casp3* 4Q/ Caspd:Caspd*
M,
\
o \
Caspd Casp3*
|
Casp3* XIAP
XIAP —é}—— Casp3tub
Cell

Add a Sensitivity Analysis Task
On the Model tab, select Add Task > Calculate sensitivities.
Under Normalization for Computed Sensitivities, select Full (full

dedimensionalization), which specifies the data should be made dimensionless. For
more information, see Normalization.
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Specify the species for sensitivity calculations by adding all nine species under the
Sensitivities to Compute section. The fastest way to do this is to use the context menu
of the table and select Add All Species. Alternatively, you can drag and drop from
Component Palette or enter each species name manually.

Since the level of Casp3* is hypothesized to control apoptosis, select Cell . [Casp3*]
as the only output. Select the rest of the species as inputs. Multiple sensitivity inputs
and outputs can be set or cleared by selecting multiple rows and using the context menu
options. If you want to find out how sensitive Casp3* is to its initial concentration over
the course of simulation, select Cell . [Casp3*] as an input as well.

Perform Sensitivity Calculation
Click the Run button on the Task tab to perform the sensitivity analysis.
After calculation, the Live Plots section shows two figures: States vs Time figure (top)

and Sensivitity figure (bottom), which contains sensitivity values of Casp3* with respect
to all species integrated across time.
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The plot shows that Casp3* is most sensitive to XIAP concentration since XIAP has the
highest sensitivity value among all the other species. Therefore, such sensitivity analysis
indicates that XIAP could be one of the most important network components or drug
targets in this model to control the Casp3* level and subsequent apoptosis events.

References
[1] Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A. (2006). Direct Lyapunov
exponent analysis enables parametric study of transient signalling governing cell

behaviour. Syst Biol (Stevenage) 153, 425-432.

[2] Wikipedia. (2013). XIAP, http:/en.wikipedia.org/wiki/XIAP
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This example shows how to perform a parameter scan by simulating a model multiple
times, each time varying the value of a parameter.

In the model described in Model of the Yeast Heterotrimeric G Protein Cycle, the rate
of G protein inactivation (kGd) is much lower in the mutant strain versus the wild-type
strain (KGd = 0.004 versus kGd = 0.11), which explains higher levels of activated
G protein (Ga) in the mutant strain. For a detailed look at how varying the level of kGd
affects the level of Ga, perform a parameter scan over five values of kGd.

Load the gprotein.sbproj project, which includes the variable m1, a model object.
sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

View the variants in the m1 model.

ml.Variants

SimBiology Variant - mutant (inactive)

Contentlndex: Type: Name: Property: Value:
1 parameter kGd Value 0.004

This model contains one variant named mutant that holds the content for the kGd
parameter. This variant is inactive.

Assign the variant to a variable, variantObj, so you can use it to perform the scan.
variantObj = ml_Variants(l);

Create a vector of five evenly spaced values for KGd ranging from 0.001 to 0.15.
kGdValues = linspace(1e-3,0.15,5)

kGdvalues

0.0010 0.0382 0.0755 0.1127 0.1500

Initialize a variable, scanData, which you will later use to hold an array of SimData
objects to store the results of the parameter scan .



Perform a Parameter Scan

scanData = [];

Loop over the five kGd values. During the loop, assign each value to the mutant variant,
and use the variant during each simulation. Store the results of the five simulations in
an array of SimData objects.

for

end

kGd = kGdValues

% Set the value (4th column) of the kGd variant (1st row)
variantObj .Content{1}{4} = kGd;

% Simulate the ml model using the kGd variant

simDataObj = sbiosimulate(ml,variantObj);

% Store the results in an array of SimData objects
scanData = [scanData;simDataObj];

The scanData array now contains five SimData objects, with each object containing the
data from one simulation in the parameter scan. Use sbioplot to plot the data.

sbioplot(scanData);
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Uncheck All Runs , expand each Run, and select the Ga species to display only its
simulation data. This shows how varying the level of kKGd affects the level of Ga.
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“Model of the Yeast Heterotrimeric G Protein Cycle” on page C-17
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In this section...

“What Is a Nonlinear Mixed-Effects Model?” on page 3-38
“Nonlinear Mixed-Effects Modeling Workflow” on page 3-40
“Specify a Covariate Model” on page 3-41

“Specify an Error Model” on page 3-43

“Error Models” on page 3-43

“Maximum Likelihood Estimation” on page 3-44

“Obtain the Fitting Status” on page 3-45

What Is a Nonlinear Mixed-Effects Model?

A mixed-effects model is a statistical model that incorporates both fixed effects and
random effects. Fixed effects are population parameters assumed to be the same each
time data is collected, and random effects are random variables associated with each
sample (individual) from a population. Mixed-effects models work with small sample
sizes and sparse data sets, and are often used to make inferences on features underlying
profiles of repeated measurements from a group of individuals from a population of
interest.

As with all regression models, their purpose is to describe a response variable as a
function of the predictor (independent) variables. Mixed-effects models, however,
recognize correlations within sample subgroups, providing a reasonable compromise
between ignoring data groups entirely, thereby losing valuable information, and fitting
each group separately, which requires significantly more data points.

For instance, consider population pharmacokinetic data that involve the administration
of a drug to several individuals and the subsequent observation of drug concentration
for each individual, and the objective is to make a broader inference on population-wide
parameters while considering individual variations. The nonlinear function often used
for such data is an exponential function since many drugs once distributed in a patient
are eliminated in an exponential fashion. Thus the measured drug concentration of an
individual can be described as:

_ Y _kitij
Yij = 78 +a£ij,
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where y;; is the jth response of the ith individual, D; is the dose administered to the ith
individual, Vis the population mean volume of distribution, a is an error parameter, and

g; ~ N(0,1), representing some measurement error. The elimination rate parameter (;)

depends on the clearance and volume of the central compartment &; = % . Both k; and

Cl; are for the ith patient, meaning they are patient-specific parameters.

To account for variations between individuals, assume that the clearance is a random
variable depending on individuals, varying around the population mean. For the ith

individual, Cl; = 6; +n;, where 0, is the fixed effect (population parameter for the
clearance) and p; is the random effect, that is, the deviation of the ith individual from the

mean clearance of the population 7n; ~ N(0,0'% ).

If you have any individual-specific covariates such as weight w that linearly relate
to the clearance, you can try explaining some of the between-individual differences.
For example, if w; is the weight of the ith individual, then the model becomes

Cl; =0y +6, *w; +n,, where 0, is the fixed effect of weight on clearance.

A general nonlinear mixed-effects (NLME) model with constant variance is as follows:

Yy =f (X, p)+E;

p;=A6+Bn,

g;~N(,0%)

n,~N(@O,%)

Yij Data vector of individual-specific response values

f General, real-valued function of p; and x;

X Data matrix of individual-specific predictor values

Di Vector of individual-specific model parameters

6 Vector of fixed effects, modeling population parameters

n; Vector of multivariate normally distributed individual-specific random effects
A; Individual-specific design matrix for combining fixed effects
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Individual-specific design matrix for combining random effects

Vector of group-specific errors, assumed to be independent, identically,
normally distributed, and independent of »;

Covariance matrix for the random effects

Error variance, assumed to be constant across observations

In addition to the constant error model, there are other error models such as
proportional, exponential, and combined error models. For details, see “Error Models” on
page 3-43.

Nonlinear Mixed-Effects Modeling Workflow

SimBiology lets you estimate fixed effects s and random effects ns as well as the
covariance matrix of random effects W. However, you cannot alter A and B design
matrices since they are automatically determined from the covariate model you specify.
Use the sbiofitmixed function to estimate nonlinear mixed-effects parameters. These
steps show one of the workflows you can use at the command line.

B W N —

Import data.
Convert the data to the groupedData format.
Define dosing data. For details, see “Doses” on page 1-42.

Create a structural model (one-, two-, or multicompartment model). For details, see
“Create Pharmacokinetic Models” on page 4-24.

Create a covariate model to define parameter-covariate relationships if any. For
details, see “Specify a Covariate Model” on page 3-41.

Map the response variable from data to the model component. For example, if you
have the measured drug concentration data for the central compartment, then map
it to the drug species in the central compartment (typically the Drug_Central
species).

Specify parameters to estimate using the estimatedInfo object. It lets you
optionally specify parameter transformations, initial values, and parameter bounds.
Supported transforms are log, probit, logit, and none (no transform).

(Optional) You can also specify an error model. The default model is the constant
error model. For instance, you can change it to the proportional error model if you
assume the measurement error is proportional to the response data. See “Specify an
Error Model” on page 3-43.
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9 Estimate parameters using sbiofitmixed, which performs “Maximum Likelihood
Estimation” on page 3-44.

10 (Optional) If you have a large, complex model, the estimation might take longer.
SimBiology lets you check the status of fitting as it progresses. See “Obtain the
Fitting Status” on page 3-45.

For a complete workflow example, see “Modeling the Population Pharmacokinetics of
Phenobarbital in Neonates”.

Specify a Covariate Model

When specifying a nonlinear mixed-effects model, you define parameter-covariate
relationship using a covariate model (CovariateModel object). For example, suppose
you have PK profile data for multiple individuals and are estimating three parameters
(clearance Cl, compartment volume V, and elimination rate k) that have both fixed and
random effects. Assume the clearance Cl has a correlation with a covariate variable
weight (w) of each individual. Each parameter can be described as a linear combination
of fixed and random effects.

Cll :61 +92 *wi +T]1i,
Vi =03 +1y;,
ki =604 +ns3;,

where 0s represent fixed effects and 7s represent random effects, which are normally

distributed Z; ~MVN(0,¥) . By default, the random effects are uncorrelated. So
MN3i
o2 0 0
¥=|0 o2 0
0 0 o2

1 Construct an empty CovariateModel object.

covModel = CovariateModel;
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2 Set the Expression property to define the relationships between parameters (Cl, V,
and k) and covariate (w). You must use theta as a prefix for all fixed effects and eta
for random effects.

covModel .Expression = {"Cl = thetal + theta2*w + etal”,"V = theta3 + eta2","k = the

The FixedEFfFectNames property displays the fixed effects defined in the model.
covModel . FixedEffectNames
ans =

"thetal”
"theta3"
"theta4*
"theta2*

The FixedEffectDescription property displays which fixed effects correspond
to which parameter. For instance, thetal is the fixed effect for the Cl parameter,
and theta?2 is the fixed effect for the weight covariate that has a correlation with CI
parameter, denoted as Cl/w.

covModel .FixedEffectDescription
ans =

e
NS
K-
“Cl/w*
3  Specify initial estimates for the fixed effects. Create a structure containing initial
estimates using the constructDefaul tFixedEffectValues function.

initialEstimates = constructDefaul tFixedEffectValues(covModel)

initialEstimates

thetal: O

theta2: 0

theta3: 0

theta4: 0
initialEstimates.thetal = 1.20;
initialEstimates.theta2 = 0.30;
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initialEstimates.theta3
initialEstimates.theta4

0.90;
0.10;

4  Set the initial estimates to the FixedEffectValues property.

covModel .FixedEffectValues = initialEstimates;
Specify a Covariance Pattern Among Random Effects

By default, sbiofitmixed assumes no covariance among random effects, that is, a
diagonal covariance matrix is used. Suppose you have ny, ns, and n3, and there is a
covariance 015 between 1; and ns. You can indicate this using a pattern matrix where 1
indicates a variance or covariance parameter which is estimated by sbiofitmixed. For

2
110 o1 012 0
instance, a pattern matrix |1 1 0 | represents | 09y 0'22 0
2
0 0 1 0 0 oF

Define such a pattern using an options struct.

options.CovPattern = [1 1 0;1 1 0;0 0 1];

Then you can use options as an input argument for sbioFitmixed. For a complete
workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 3-40.

Specify an Error Model

During the “Nonlinear Mixed-Effects Modeling Workflow” on page 3-40, you can
optionally specify an error model using a structure.

options.ErrorModel = “proportional”;
Then you can use options as one of the input arguments when you run sbiofitmixed.

Supported error models are constant (default), proportional, combined, and exponential
models. For details, see “Error Models” on page 3-43.

Error Models

SimBiology supports the error models described in the following table. For instance, if
you assume every observation has a constant amount of noise, use the constant error
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model, which is the default. Instead, if you assume the error is proportional to the
response data, then the proportional error model might be more appropriate.

Error |Mathematical Representation Standard Deviation of Error Model
Model
constan y=f +ae a
(default
proport y:f+b|f|g b|fl
combin y=f+(a+b|f|)8 atb |f]|
}f: f *exp(ag) or equivalently, m £ g0
exponential
log(y) =log(f) + ae a

Here, y is the response, fis the function value, € is a standard mean-zero and unit-
variance (Gaussian) variable, and a and b are error parameters. For instance, if you
assume the error is approximately 5% of each observation, use the proportional error
model with b = 0.05. In SimBiology, f typically represents the simulation result.

Maximum Likelihood Estimation

SimBiology estimates the parameters of a nonlinear mixed-effects model by maximizing a
likelihood function, which can be described as

p(y|6,6%,¥) = jp(y |6,n,6%) p( | ¥) dn,

where y is the response data, 6 is the vector of fixed effects, o is the error variance, @
is the covariance matrix for random effects, and 7 is the vector of unobserved random

effects. p(y| 0,02,¥) is the marginal density of y, p(y|0,n,0 2) is the conditional density
of ¥ given the random effects 5, and the prior distribution of n is p(n |'¥) .

This integral contains a nonlinear function of the fixed effects and variance parameters
that you want to maximize. Typically for nonlinear models, the integral does not have a
closed form, and needs to be solved numerically, which involves simulating the function
at each time step of an optimization algorithm. Therefore, the estimation can take a
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long time for complex models, and initial values of parameters might play an important
role for successful convergence. SimBiology provides these iterative algorithms to solve
the integral and maximize the likelihood if you have Statistics and Machine Learning
Toolbox™,

+  LME — Use the likelihood for the linear mixed-effects model at the current conditional
estimates of 0 and 5. This is the default.

* RELME — Use the restricted likelihood for the linear mixed-effects model at the
current conditional estimates of 6 and 7.

*  FO — First-order (Laplacian) approximation without random effects.
* FOCE — First-order (Laplacian) approximation at the conditional estimates of 6.

+ stochastic EM — Use the Expectation-Maximization (EM) algorithm in which the E
step is replaced by a stochastic procedure.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page
3-40.

Obtain the Fitting Status

During the estimation of mixed-effects parameters of a large and complex model that
may take a longer time, you may want to obtain the status of fitting as it progresses.
The sbioFitstatusplot function dynamically shows the progress of the fitting by
plotting the values of fixed effects parameters (theta) and the estimates of the variance
parameters, that is, the diagonal elements of the covariance matrix of the random effects
(W), and the log-likelihood.

To obtain the status plot, you must set the OutputFcn filed of a statset option as
follows.

fitOptions.Options = statset("OutputFcn®,@sbiofitstatusplot);

You can then specify FitOptions as one of input arguments when you run
sbiofitmixed. The next figure is an example of the fit status plot.
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theta1
0.8 :
0.6
0.4
0.2 : : : : : : :
0 50 100 150 200 0 50 100 150 200
LY Y22
0.22 . . . 0.4 T .
0.2 JW 1 0.3
0.18 ] 0.2 .
0.16 . : . 0.1 . . .
1] 50 100 150 200 1] 50 100 150 200
loglikelihood
-505 r . .
-510
-515
-520 * . *
1] 50 100 150 200

Here are some tips for interpreting the plot.

+ The fitting function tries to maximize the log-likelihood. When the plot begins to
display a flat line, this might indicate that maximization is complete. Try setting the
maximum iterations to a lower number to reduce the number of iterations you need
and improve performance.

+  Plots for the fixed effects (thetas) and the variance parameters (Ws) should show
convergence. If you see oscillations, or jumps without accompanying improvements in
the log-likelihood, the model may be overparameterized. Try the following:

*  Reduce the number of fixed effects.
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* Reduce the number of random effects.

Simplify the covariance matrix pattern of random effects (if you have previously
changed it from the default diagonal matrix).

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page
3-40.
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Nonlinear Regression
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In this section...

“What is Nonlinear Regression?” on page 3-48
“Fitting Options in SimBiology” on page 3-49
“Error Models” on page 3-43

“Maximum Likelihood Estimation” on page 3-51
“Fitting Workflow for sbiofit” on page 3-52

What is Nonlinear Regression?

The purpose of regression models is to describe a response variable as a function of
independent variables. Multiple linear regression models describe the response as a
linear combination of coefficients and functions of independent variables. Nonlinearities
can be modeled using nonlinear functions of independent variables. However, the
coefficients always enter the model in a linear fashion.

Nonlinear regression models are more mechanistic models of nonlinear relationships
between the response and independent variables. The parameters can enter the model
as exponential, trigonometric, power, or any other nonlinear function. The unknown
parameters in the model are estimated by minimizing a statistical criterion such as the
negative log likelihood or the sum of squared deviations between observed and predicted
values.

In the case of pharmacokinetic (PK) studies, the response data usually represent some
measured drug concentrations, and independent variables are often dose and time. The
nonlinear function often used for such data is an exponential function since many drugs
once distributed in a patient are eliminated in an exponential fashion. One PK parameter
to estimate in this case is the rate at which the drug is eliminated from the body given
the concentration-time data.

For instance, consider drug plasma concentration data from a single individual after an
intravenous bolus dose measured at different time points with some errors. Assume the

measured drug concentration follows a monoexponential decline: C; = Coe_ket +ae.

This model describes the time course of drug concentration in the body (C,), as a function
of the drug concentration after an intravenous bolus dose at t = 0 (Cy), time (¢), and
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elimination rate parameter (k). € is the mean-zero and unit-variance variable, that is,
€ ~ N(0,1) representing the measurement error and a is the error model parameter
(here, standard deviation).

More generically, you can write the model as y; = f(x;; p)+ g(e;) , where y; is the jth
response of interest (such as (), fis a function of known quantities x (such as C, and

time ¢), model parameters p (such as k), and an error model g(e;).

If there are multiple observations on multiple individuals, the model becomes
Vi = f (x;5p5)+8(g;5) where y;; is the jth observation of the ith individual. Additionally,

you can categorize your data into different groups based on different categories such as
sex, age, or height.

Fitting Options in SimBiology

This table summarizes nonlinear regression options available in SimBiology.

Fitting Option Example

Individual-specific parameter estimation

(Unpooled fitting) 407
#  Individual 1
35F
] ||'!dividua| 3
Fit each individual separately, resulting ol o
in one set of parameter estimates for each Fit3
individual. 25}

Response
]
[==]

Individual 2
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Category- or group-specific parameter
estimation

Fit each category or group separately,
resulting in one set of parameter estimates
for each category.

40

Response

®  Malke
Female
Male Fit
Female Fit

Population-wide parameter estimation
(Pooled fitting)

Fit all of the data pooled together, resulting
in just one set of parameter estimates.

35+

30F

Response

10r

#®  Individual 1

Individual 2
& Individual 3
Pooled Fit

20 25 30 35 40

Error Models

SimBiology supports the error models described in the following table. For instance, if
you assume every observation has a constant amount of noise, use the constant error
model, which is the default. Instead, if you assume the error is proportional to the
response data, then the proportional error model might be more appropriate.
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Error |Mathematical Representation Standard Deviation of Error Model
Model
constan y= f 4g¢ a
(default
proport y=f+b|f|8 blfl
combing \ _ ¢ +(a+b|f)e atb|f|
)f: f *exp(ag) or equivalently, /ea2 1 gt
exponential
log(y) =log(f)+ ae a

Here, y is the response, fis the function value, € is a standard mean-zero and unit-
variance (Gaussian) variable, and ¢ and b are error parameters. For instance, if you
assume the error is approximately 5% of each observation, use the proportional error
model with b = 0.05. In SimBiology, f typically represents the simulation result.

Maximum Likelihood Estimation

To fit nonlinear regression models in SimBiology, use sbiofit. It minimizes the
negative of the logarithm of the likelihood function. For normally distributed errors, the
negative log-likelihood is:

N (v — f(x:p))> N
~InL = ZMJFZm,/zm?
i 20; ;

1 1

This formulation uses the following notation.

I Log likelihood

Number of experimental observations
¥i The ith experimental observation
f ( X p) Predicted value of the ith observation,

which is a function of independent
variables x; and estimated parameters p

o Standard deviation of the ith observation.
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The exponential error model is additive and normally distributed on the log scale.

N (Inv: —In f (x : 2 N
Therefore, the objective function becomes —InL = 2( i f L p)) + Zln ,/277:0‘;‘2
i i

2
i 20—1'

For details about objective functions and estimation methods, see “Objective Functions”.

Fitting Workflow for sbiofit

The following steps show one of the workflows you can use at the command line to fit a
PK model.

Import data.
Convert the data to the groupedData format.

Define dosing data. For details, see “Doses” on page 1-42.

B W N -

Create a structural model (one-, two-, or a multicompartment model). For details, see
“Create Pharmacokinetic Models” on page 4-24.

5 Map the response variable from data to the model component. For example, if you
have the measured drug concentration data for the central compartment, then map
it to the drug species in the central compartment (typically the Drug_Central
species).

6  Specify parameters to estimate using an estimatedInfo object. Optionally, you
can specify parameter transformations, initial values, and parameter bounds.

7 Perform parameter estimation using sbiofit.
For illustrated examples, see the following.

+ “Fit a One-Compartment Model to an Individual's PK Profile”
+ “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals”
+ “Estimate Category-Specific PK Parameters for Multiple Individuals”
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Estimate Parameters of a G protein Model

In this section...

“Overview” on page 3-53

“Loading the Example Model” on page 3-54

“Defining Experimental Data” on page 3-54

“Simulating the G Protein Model” on page 3-55

“Estimating the kGd Parameter in the G Protein Model” on page 3-57
“Simulating and Plotting Results Using the Estimated Parameter” on page 3-58

“Estimating Other Parameters in the G Protein Model” on page 3-60

Overview

About the Example Model

This example illustrates parameter estimation using time-course data from one
experiment, using the sbioparamestim function. For information on all available
parameter estimation and population fitting techniques, see .

This example uses the model described in “Model of the Yeast Heterotrimeric G Protein
Cycle” on page C-17 to illustrate parameter estimation.

This table lists the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each mass action reaction. For reversible reactions,
the forward rate parameter is listed first.

No. |Name Reaction’ Rate Parameters
Receptor-ligand interaction L + R <->RL kRL, KRLm
2 Heterotrimeric G protein Gd + Gbg -> G kG1
formation
G protein activation RL + G -> Ga + Gbg + RL kGa
Receptor synthesis and R <-> null kRdo, kRs
degradation
Receptor-ligand degradation |[RL -> null kRD1
G protein inactivation Ga -> Gd kGd
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No. |Name Reaction’ Rate Parameters

! Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

About the Example

The study used to build the example model (Yi et al., 2003) reported the estimated value
of parameter kGd as 0.11 for the wild-type strain. In “Calculate Sensitivities” on page
3-25, the analysis showed that Ga is sensitive to parameters kGd, kRs, KRD1, and kGa.

This example shows:

+ How to estimate the parameter KGd and determine its effect on the model

+ How to estimate parameters KGd, kRs, kRD1, and kGa to obtain a better fit to the
experimental data

Loading the Example Model

The gprotein.sbproj project contains a model for the wild-type strain (stored in
variable ml1). Load the G protein model for the wild-type strain:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Defining Experimental Data

The study used for this example (Yi et al., 2003) reports, in a plot, the experimental data
as the fraction of active G protein. Store the time data for the experimental results in a
variable, tExpt, and store the values for the fraction of active G protein in a variable,
GaFracExpt:

tExpt = [0 10 30 60 110 210 300 450 600]";
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]";

Note: For this simple example, you stored the experimental data in a variable in the
MATLAB Workspace by typing the data values. However, typically, you import larger
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data sets into a MATLAB variable. For more information about importing data into
variables, see “Methods for Importing Data”.

Simulating the G Protein Model

1 Simulate the model and return the results to a SimData object:

simDataObj = sbiosimulate(ml);
2 Retrieve the time and state data for the GaFrac parameter:

[tOrig, GaFracOrig] = selectbyname(simbDataObj,"GaFrac");
Calculating R? for the G Protein Model

R? is the square of the correlation between the response values and the predicted

response values. Therefore, R* measures how successful the fit is in explaining the
variation of the data.

1 Calculate the sum of squares about the mean (SST):

sst = norm(GaFracExpt - mean(GaFracExpt))”"2;

2 Interpolate the data to get time points that match the time points in the
experimental data using the pchip interpolation method:

GaFracResampled = interpl(tOrig, GaFracOrig, tExpt, "pchip”);
3 Calculate the sum of squares due to error (SSE):

sse = norm(GaFrackExpt - GaFracResampled)”2;

4 Calculate the R? value for the simulation data before parameter estimation:

rSquareOrig = l-sse/sst

rSquareOrig
0.8968

For more information about the functions used here, see the norm and interpl
reference pages.

Plotting the Experimental Results and Simulation Data

1 Plot the experimental data for active G protein:
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plot(tExpt, GaFracExpt, "ro");
title("Variation of G Protein®);

xlabel ("Time (sec)");

ylabel ("Active Fraction of G Protein®);
legend("Experiment”®);

2 Plot the simulation data in the same plot:

hold on;
plot(tOrig, GaFracOrig);

legendText = {"Experiment”, sprintf("Original R"2=%4_2f",_ ..

rSquareOrig)};
legend(legendText{:});

Figurel
File Edit View Insert Tools Desktop Window Help
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Note: Leave this figure window open so you can use it to plot and compare results of

using the estimated parameters later in this example.

Estimating the kGd Parameter in the G Protein Model

The study used to build the G protein model reported an estimated value of 0.11 for the
parameter KGd in the wild-type strain (Yi et al., 2003). This example estimates the value
of kGd.

1

Create a variable for the parameter to estimate. Also create a variable for the
parameter corresponding to the experimental data to which you are fitting:

paramToEst = sbioselect(ml, "Name®, “kGd");

GaFrac = sbioselect(ml, “Name®, "GaFrac");

Specify plotting of each iteration of the parameter estimation to see how
optimization is progressing:

opt = optimset("PlotFcns®,@optimplotfval, "Maxlter®,15);

Use the current value of the KGd parameter in the model as the starting value for

optimization:

[estValuesl, resultl] = sbioparamestim(ml, tExpt, GaFracExpt,
GaFrac, paramToEst, {}, {"fminsearch”,opt});
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Note: Close this figure before proceeding with the example.

Simulating and Plotting Results Using the Estimated Parameter

Use the estimated value of the KGd parameter to see how it affects simulation results.

1 Use a variant to store the estimated value of kGd:

estvarObj =

"kGd®,

addvariant (m1, “Optimized kGd");

addcontent(estvarObj, {"parameter-, "Value®, estValuesl});

2 Apply the value stored in the variant, simulate the model, and return the results:

simDataObjl = sbiosimulate(ml, estvarObj );
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[tl, GaFracl] = selectbyname(simDataObjl, "GaFrac®);

Calculate the R* value with the new estimate obtained using "fminsearch":

GaFraclResampled = interpl(tl, GaFracl, tExpt, "pchip®);
ssel = norm(GaFracExpt - GaFraclResampled)”2;
rSquarel = 1 - ssel/sst

rSquarel =

0.9199

Plot the data and compare. If you left the previous figure open, because hold is on,
the new plot appears in the existing figure to facilitate the comparison:

plot(tl, GaFracl, "m-");
legendText{end + 1} = sprintf("kGd Changed R"2=%4.2f", rSquarel);
legend(legendText{:});
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The figure shows the best fit achieved by changing the parameter kGd.

Note: Leave this figure window open, so that you can use it later in this example.

Estimating Other Parameters in the G Protein Model

The example illustrating sensitivity analysis (“Calculate Sensitivities” on page 3-25)
showed that Ga is sensitive to parameters kRs, kRD1, kGa, and kGd. Based on the results
from the sensitivity analysis, this tutorial shows you how to estimate these parameters.
The sensitivity data is presented in “Extract and Plot Sensitivity Data” on page 3-27.
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Note: Although this example estimates four parameters to fit the data, there is no
published experimental data that verifies these values, and this example is only for
illustration.

1 Create a variable containing the parameters to estimate:

paramsToEst = [sbioselect(ml, “Name®", "kRs");...
sbioselect(mnl, “"Name®", "kRD1");...
sbioselect(ml, “"Name®", “kGa");...
sbioselect(ml, “"Name®, “kGd")];

2 Estimate the parameters. Use the current values of parameters in the model as the
starting values for optimization. Use the opt variable you created previously to
specify plotting of each iteration of the parameter estimation to see how optimization
1s progressing:

[estValues2, result2] = sbioparamestim(ml, tExpt, GaFracExpt,...
GaFrac, paramsToEst, {}, {"fminsearch®,opt});
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Note: Close this figure before proceeding with the example.

3 Compare original parameter values and the estimated parameter values obtained
with "fminsearch®:

% Original parameter values
paramsToEst

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 kRs 4

2 kRD1 0.004

3 kGa 1e-005
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4 kGd 0.11

% Estimated parameter values
num2str(estValues?2)

ans =

4.549
0.0031018
9.0068e-006
0.12381

Calculate the R* value using the new estimates obtained with "fminsearch*:

estvarObj2 = addvariant(ml, "Optimized kRs, kRD1l, kGa, and kGd");
addcontent(estvarObj2, ...
{{"parameter®, "kRs", "Value", estValues2(1)}, -..
{"parameter”, "kRD1", "Value", estValues2(2)}, -..-
{"parameter”, "kGa", "Value®, estValues2(3)}, ...
{"parameter®, “kGd", "Value®, estValues2(4)}}):
simDataObj2 = sbiosimulate(ml, estvarObj2);
[t2, GaFrac2] = selectbyname(simDataObj2, "GaFrac");
GaFrac2Resampled = interpl(t2, GaFrac2, tExpt, "“pchip®);
sse2 = norm(GaFracExpt - GaFrac2Resampled)”2;
rSquare2 = 1 - sse2/sst

rSquare2 =

0.9603

Plot the data and compare. If you left the previous figure open, because hold is on,
the new plot appears in the existing figure to facilitate the comparison:

plot(t2, GaFrac2, "g-");

legendText{end + 1} = sprintf("4 Constants Changed R™"2=%4.2f", ...
rSquare2?);

legend(legendText{:});
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Accelerating Model Simulations and Analyses

In this section...
“What Is Acceleration?” on page 3-65
“What Simulations and Analyses Can Be Accelerated?” on page 3-65

“When to Accelerate Simulations and Analyses” on page 3-65
“Prerequisites for Accelerating Simulations and Analyses” on page 3-66

“Accelerate a Simulation or Analysis” on page 3-66

“Troubleshooting Accelerated Simulations and Analyses” on page 3-67

What Is Acceleration?

Normally, when simulating or analyzing a model in SimBiology, you express the model
in MATLAB code. You can accelerate the simulation or analysis by converting the model
to compiled C code, which executes faster. Because this compilation step has a small time
overhead, acceleration is not recommended for individual simulations of small models.
However, for large models, or for repeated simulations during analysis, acceleration can
provide a significant speed increase that outweighs the small time overhead.

What Simulations and Analyses Can Be Accelerated?

You can accelerate the following:

* Simulating models

+ Calculating sensitivities

Note: For parameter estimations (using sbioparamestim) and population fittings
(using sbionlinfit, sbionlmefit, or sbionlmefitsa), acceleration is automatically
enabled, if the prerequisites for accelerating simulations and analyses are met.

When to Accelerate Simulations and Analyses

The functionality to accelerate simulations performs optimally under the following
conditions:
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*  Running many simulations with different initial conditions

*  Running very long simulations (for example, simulations that take longer than a
minute to run)

Prerequisites for Accelerating Simulations and Analyses

To prepare your models for accelerated simulations, install and set up a compiler:

1 Install a C compiler (if one is not already installed on your system). For a
current list of supported compilers, see Supported and Compatible Compilers
atwww . mathworks . com.

2 Ensure that any user-defined functions in your model can be used for code
generation from MATLAB, so they can convert to compiled C. For more information,
see Language, Function, and Object support for C and C++ code generation (this
documentation requires MATLAB Coder™ license) or contact MathWorks Technical
Support.

Tip On 32-bit Windows platforms, the LCC compiler is automatically installed. However,
for better performance of the acceleration functionality, you may want to install a
supported compiler other than LCC, and it will be selected automatically.

On 64-bit Windows platforms, if you have not installed another compiler, SimBiology
uses the LCC64 compiler for model accelerations. If you have installed another supported
compiler, it will be selected automatically.

Accelerate a Simulation or Analysis

Accelerating simulations is a two step process:

1 Use the sbioaccelerate function to prepare your model for accelerated
simulations. Use the same input arguments that you plan to use with
sbiosimulate. For example:

sbioaccelerate(modelObj, configsetObj, doseObj);

This step prepares your model for acceleration and may take a minute or longer to
complete for very large models.
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Note: You need to run sbioaccelerate again, before running simulations, if you
make any modifications to this model, other than:
+  Changes to any variants
Changes to values for the InitialAmount property of species
+  Changes to the Capacity property of compartments
+ Changes to the Value property of parameters

2 Use the sbiosimulate function with the same input arguments that you used with
sbioaccelerate. For example:

simdataObj = sbiosimulate(modelObj, configsetObj, doseObj);

Troubleshooting Accelerated Simulations and Analyses

If you have user-defined functions, do not use persistent variables in these functions.
Persistent variables are not compatible with the functionality used for accelerating
simulations.

If you specify user-defined functions in SimBiology expressions, you might see the
following warning if your code is not compatible with code generation from MATLAB:

The SimBiology Expression and any user-defined functions

could not be accelerated. Please check that these expressions
and any user-defined functions are supported for code generation
as described in the Code Generation from MATLAB documentation.

where Expression is any of the following:

* Reaction rate/rule expression
* Repeated assignment rule expression
*  Event trigger expression

+ Event function expression

For more information, see Language, Function, and Object support for C and C++ code
generation (this documentation requires MATLAB Coder license) or contact MathWorks
Technical Support.
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*  “Pharmacokinetic Modeling Functionality” on page 4-2
+ “Importing Data — Supported Files and Data Types” on page 4-7
* “Importing Data” on page 4-13
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Pharmacokinetic Modeling Functionality

In this section...

“Overview” on page 4-2

“Required and Recommended Software for Pharmacokinetic Modeling” on page 4-2
“How SimBiology Supports Pharmacokinetic Modeling” on page 4-3

“Using the Command Line Versus the SimBiology Desktop” on page 4-5
“Pharmacokinetic Modeling Example” on page 4-5

“Acknowledgements: Tobramycin Data Set” on page 4-5

Overview

SimBiology software extends the MATLAB computing environment for analyzing
pharmacokinetic (PK) data using models. The software lets you do the following:

* Create models — Use a model construction wizard. Alternatively, extend any model
with pharmacodynamic (PD) model components, or build higher fidelity models. See
“Model” on page 4-3 for more information.

+ Fit data — Fit nonlinear, mixed-effects models to data, and estimate the fixed and
random effects, or fit the data using nonlinear least squares. For more information,
see “Analyze Data Using Models” on page 4-4.

*  Generate diagnostic plots — For more information, see “Analyze Data Using Models”
on page 4-4.

The software lets you work with different model structures, thus letting you try multiple
models to see which one produces the best results.

Required and Recommended Software for Pharmacokinetic Modeling
Required Software

MATLAB Provides a command-line interface and an integrated software
environment. For instructions, see the MATLAB installation
documentation for your platform.

If you have installed MATLAB and want to check which other

MathWorks® products are installed, enter ver in the MATLAB
Command Window.
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Statistics and Provides fitting tools including functions used to analyze
Machine Learning nonlinear mixed effects.

Toolbox (Version 7.3
(R2010a) or greater)

Recommended Software

C Compiler Required to prepare the model for accelerating
simulations. For list of supported compilers, see
Supported and Compatible Compilers.

Optimization Optimization Toolbox extends the MATLAB technical
Toolbox™ computing environment with tools and widely used algorithms
for standard and large-scale optimization. These algorithms
solve constrained and unconstrained, continuous and discrete
problems. If the Optimization Toolbox product is installed, you
can specify additional methods for likelihood maximization. If
you do not have this product, SimBiology uses fminsearch
provided by MATLAB for likelihood maximization.

How SimBiology Supports Pharmacokinetic Modeling

Import and Work with Data

You can import tabular data into the SimBiology desktop or the MATLAB Workspace.
The supported file types are .xls, .csv, and . txt. You can specify that the data is in a
NONMEM?" formatted file. The import process interprets the columns according to the
NONMEM definitions.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at
the command line.

Model

SimBiology provides an extensible modeling environment. You can do any of the
following:
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Create a PK model using a model construction wizard to specify the number of
compartments, the route of administration, and the type of elimination.

Extend any model with pharmacodynamic (PD) model components, or build higher
fidelity models.

Build or load your own SimBiology, or SBML model.

For more information on building SimBiology models, see “What is a Model?” on page 1-2.

Analyze Data Using Models

Perform both individual and population fits to grouped longitudinal data:

Individual fit — Fit data using nonlinear least-squares method, specify parameter
transformations, estimate parameters, and calculate residuals and the estimated
coefficient covariance matrix.

Population fit — Fit data, specify parameter transformations, and estimate the fixed
effects and the random sources of variation on parameters using nonlinear mixed-
effects models.

You can use the following methods to estimate the fixed effects:

* LME — Linear mixed-effects approximation
*  RELME — Restricted LME approximation
FO — First-order estimate

*+ FOCE — First-order conditional estimate

For more information about each of these methods, see nImefit in the Statistics and
Machine Learning Toolbox documentation.

Population fit using a stochastic algorithm — Fit data, specify parameter
transformations, and estimate the fixed effects and the random sources of variation
on parameters, using the Stochastic Approximation Expectation-Maximization
(SAEM) algorithm. SAEM is more robust with respect to starting values. This
functionality relaxes assumption of constant error variance.

For more information, see nImefitsa in the Statistics and Machine Learning Toolbox
documentation.

In addition, you can generate diagnostic plots that show:

The predicted time courses and observations for an individual or the population
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*  Observed versus predicted values
* Residuals versus time, group, or predictions
* Distribution of the residuals

* A box-plot for random effects or parameter estimates from individual fitting

Using the Command Line Versus the SimBiology Desktop

SimBiology extends MATLAB and lets you access pharmacokinetic modeling
functionality at the command line and in the graphical SimBiology desktop.

Use the command line to write and save scripts for batch processing and to automate
your workflow.

Use the SimBiology desktop to interactively change and iterate through the model
workflow. The SimBiology desktop lets you encapsulate models, data, tasks, task
settings, and diagnostic plots into one convenient package, namely a SimBiology project.

Furthermore, if you are using the SimBiology desktop and want to learn about using
the command line, the MATLAB code capture feature in the desktop lets you see the
commands and export files for further scripting in the MATLAB editor.

Pharmacokinetic Modeling Example

For an example showing pharmacokinetic modeling functionality at the command line,
see Modeling the Population Pharmacokinetics of Phenobarbital in Neonates.

Acknowledgements: Tobramycin Data Set

Acknowledgements for data in the tobramycin.txt file in the /matlab/toolbox/
simbio/simbiodemos folder:

References

[1] Original Publication: Aarons L, Vozeh S, Wenk M, Weiss P, and Follath F.
“Population pharmacokinetics of tobramycin.” Br J Clin Pharmacol. 1989
Sep;28(3):305—-14.

Data set provided by Dr. Leon Aarons, (laarons@fsl.pa.man.ac.uk)
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The data in the tobramycin.txt file were downloaded from the Web site of the
Resource Facility for Population Kinetics http://depts.washington.edu/rfpk/

service/datasets/index.html (no longer active). Funding source: NIH/NIBIB grant
P41-EB01975.

The original data set was modified as follows:

Header comments were removed.

* The file was converted to a tab-delimited format.

Missing values in the HT column were denoted with "." instead of 200000000 .000.
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Importing Data — Supported Files and Data Types

In this section...

“Supported Files and Data Types” on page 4-7
“Support for Importing NONMEM Formatted Files” on page 4-7
“Creating a Data File with SimBiology Definitions” on page 4-12

Supported Files and Data Types

You can import tabular data to the SimBiology desktop or to the MATLAB Workspace.
The supported file types are .xls, .csv, and .txt. You can specify that the data is

in a NONMEM formatted file. The import process interprets the columns according to
the NONMEM definitions. For more information see “Support for Importing NONMEM
Formatted Files” on page 4-7.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at
the command line.

Note: If your data set contains dosing information that is infusion data, the data set
must contain the rate and not an infusion duration.

Unit Conversion

Regardless of whether unit conversion functionality is on or off, dosing in the data file
must be expressed in amounts (or as amount/time for infusion rate). By default Unit
Conversion is off, so you must ensure that units for the data are consistent with each
other. If you want to turn on unit conversion, see “Unit Conversion for Imported Data” on
page 4-33 .

Support for Importing NONMEM Formatted Files

You can specify that the data is in a NONMEM formatted file. The following table
highlights the interpretation of this data in SimBiology software.
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Column Header

Interpretation

ID

text (string), numeric, or categorical values that identify
the record or group. The import process assumes that
contiguous data with the same value contains data from
one individual. If the data contains non-contiguous
references to the same value, the import process assigns
the second ID encountered an indexed valued derived
from the group first encountered. For example, if the

ID columns contains [1 1 1 2 2 2 1 1 1], the IDs
assigned are 1, 2, 1 1.

TIME

Monotonically increasing positive values within each
group, indicating time of observation or dose or text
(string). The data file can specify clock (2:30 as a string)
or decimal values (6.25). The import process assigns a
value of O to the first TIME value in the data file. The

import process assigns subsequent values relative to the
first value.

The following table is an example of how the import
process interprets the clock values as decimal values.

Original Clock Values Imported Values
10:00 0

10:30 0.5

11 1

12:30 2.5

If the data file also contains a DATE column, the import
process uses it with the TIME column in calculating the
relative TIME values. The column cannot contain Inf.
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Column Header Interpretation

DATE, DAT1, DAT2, or DAT3 |Defines the day of the observation or the dose. The column
can contain the month as a number (9) or a string (Sep).
Specify date in the following formats:

* DATE — The column can specify month/day/year or
month-day-year. If you specify two numbers, the
import process assumes they are month and day. You
can use either / or - as a separator.

+ DAT1 — The column can specify day/month/year or
day-month-year. If you specify two numbers, the
import process assumes they are day and month.

+ DAT2 — The column can specify year/month/day or
year-month-day. If you specify two numbers, the
import process assumes they are month and day.

* DAT3 — The column can specify year/day/month or
year-day-month. If you specify two numbers, the
import process assumes they are day and month.

Note:

+ If you specify only one number, the import process
assumes it is the day.

* You can omit the year or specify 1, 2, 3, or 4 digits. If
you specify two-digit years, it is assumed to be in the
1900s.

+ If the data has the DAT1, DAT2, or DAT3 column,
set the DatelLabel property of a NMFi leDef object
accordingly using sbionmfi ledef. Then specify the
object as the second input argument when you run
sbionmimport.

DV Numeric value of an observation. Column cannot contain
Infor—Inf.
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Column Header Interpretation

MDV Defines whether a row describes an observation:

* Row contains 0 — Observation event

* Row contains 1 — Not an observation event

EVID Defines the type of event described for the row in the
record:

*+ 0 — Observation event; row contains an observed
value.

*+ 1 — Dose event; row describes a dose.

+ 2 — Other event; row describes some other event such
as measurement of a covariate.

If a column contains values for dose, but EVID is not 1, the
1import process ignores the value. You see a warning and
the value is ignored.

If EVID is set to 2, then only those specified row data are
imported as covariate data. However, if you have an EVID
column as well as one or more covariate columns, but do
not specify a value of 2 anywhere in the EVID column,
then SimBiology imports all the row data as covariate
values.

The import process does not support values 3 and 4. You
see a warning and the value is ignored.
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Column Header

Interpretation

CMT

Indicates which compartment is used for observation value
or for dose received. The interpretation also depends on
EVID:

* Observation event (EVID = 0) — CMT column
indicates which compartment was used for observation
value.

* Dose Event (EVID = 1) — CMT column indicates which
compartment received the dose.

Note: SimBiology numbers compartments starting with
1, while NONMEM numbers them starting with 0. For
instance, if a NONMEM data file contains doses and
measurements for CMT = 0, SimBiology generates data
columns named Dosel and Responsel respectively.

AMT

Positive number indicating dose. O or NaN specifies no dose
administered. The column cannot contain Inf.

RATE

Positive number indicating rate of infusion. O specifies an
infinite rate (equivalent to a bolus dose), and NaN specifies
no rate. The column cannot contain Inf.

Positive number defining the time between doses.

ADDL

When the data specifies a number of identical serial doses
at specific intervals (defined by 11), ADDL specifies the
number of doses in the series excluding the initial dose.

If the data specifies Il but not ADDL, then SimBiology
assumes that the dosing occurs for the duration of that
data record.

Unsupported NONMEM Definitions

The import process does not support (and therefore ignores) the rows containing the
following values or definitions:

*+ EVID values 3 and 4

* SS column for specifying steady state doses

*  PCMT column to define whether to compute a prediction for the row
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*  CALL column for calling the ERROR or the PK subroutine

+ If rate is specified as being less than zero, it is assumed to be zero

Creating a Data File with SimBiology Definitions

If you are creating a file containing population data that you want to later import into
SimBiology, create the data file with the following columns:

*  Group column — Specify text, numeric, or categorical values. The rows in the file that
have the same Group column value are for the same individual.

*  Time column — Specify monotonically increasing positive values within each group
that define the time of the dose, observation and/or covariate measurements.

+ Zero or more dosing columns — Create one dosing column for each compartment
being dosed. In each column, specify positive values representing doses in amount
that are added to a species. Use O or NaN to specify that no dose was applied at the
specified time. This is useful for times when an observation was recorded but no dose
was applied.

+ Zero, or more rate columns — Specify positive values. Zero specifies an infinite rate
and NaN specifies that no rate applies. The rate column is associated with a dosing
column and defines the rate at which the dose is administered.

+ Zero or more observation columns — Specify numeric values or NaNs. You can only
specify one observation value at a particular time for each group. NaN values define
that no observation was recorded at the specified time. This is useful for times when a
dose was applied but no observation was recorded.

+ Zero or more covariate columns — Specify numeric values or NaNs. Each value
defines the covariate value at the specified time. NaN values define that no covariate
observation was recorded at the specified time.

If you set an EVID value of 2 for some rows, then SimBiology imports only those rows
as covariate data. If you do not mention an EVID value of 2 anywhere and have one or
more covariate columns, then SimBiology imports all the row data as covariate data.
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Importing Data

In this section...

“Import Data from Files” on page 4-13
“Importing Data from NONMEM-Formatted Files” on page 4-14
“Other Resources for Importing Data” on page 4-15

Import Data from Files

Use the dataset function to import tabular data with named columns into an array
that you can use in fitting and analysis at the command line. Use this function when
you want to import the data without NONMEM interpretation of column headers. The
dataset function lets you specify parameter/value pair arguments in which you can
specify options such as the type of delimiter, and whether the first row contains header
names. For more information, see dataset.

To prepare the data file for import, remove any comments that are present at the
beginning of the file.

Examples:

% text Files

data = dataset("file", "tobramycin.txt")

% text Files with . in place of missing values

data = dataset("file", "tobramycin.txt", "TreatAsEmpty", ".")

% For Excel files
data = dataset("xlIsfile", "tobramycin.xls")

You can also construct the dataset array from variables in the MATLAB Workspace.
% Create a 10x2 array

X = rand(10,2);

% Construct a dataset array containing X

data = dataset({x(:, 1), "Column1*}, {x(:,2), "Column2°})

If you import the data as separate variables containing doubles, you can construct the
dataset array by concatenating the variables.

% Create 2 10x1 vectors
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X
y

rand(10,1);
rand(10,1);

% Construct a dataset array containing x and y
data = dataset({x, "Columni®}, {y, "Column2®})
After you finish analyzing your data, you can export any new variables in the MATLAB
Workspace to a variety of file formats.

Importing Data from NONMEM-Formatted Files

Use the sbionmimport function to import data from NONMEM formatted files. To
import the data without NONMEM interpretation of column headers, see “Import Data
from Files” on page 4-13.

To prepare the data file for import, remove any comments that are present at the
beginning of the file and select one of the following methods to import your data:

+ If the data file contains only the column header values shown in “Support for
Importing NONMEM Formatted Files” on page 4-7, use the syntax shown in the
following example:

filename = "C:\work\datafiles\dose.xls";
ds = sbionmimport(Ffilename);

+ If the data file has column header labels different from the table shown in “Support
for Importing NONMEM Formatted Files” on page 4-7 and you want to apply
NONMEM interpretation of headers:

1 Create a NONMEM file definition object. This object lets you define what the
column headers in the data file mean in SimBiology. In the following example,
the column containing response values is CP, whereas in NONMEM formatted
files the column is labelled DV.

To use the tobramycin data set [1], create a NONMEM file definition object and
define the following:

def

def.
def.
def.
def.
def.
def.
def.

= sbionmfiledef;

DoselLabel = "DOSE*;

GroupLabel = "ID";

TimeLabel = "TIME";

DependentVariableLabel = "CP";
MissingDependentVariableLabel = *MDV*;
EventlDLabel = "EVID";
ContinuousCovariatelLabels = {*"WT", "HT", "AGE",

"SEX", "CLCR"};
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Your file can contain any name for column headings. See sbionmfi ledef for the
list of properties you can configure in the NONMEM file definition object.

2 Use the sbionmimport function to import your data file with the column header
definitions as specified in the NONMEM file definition object. For example,
browse to matlabroot/toolbox/simbio/simbiodemos/ (where matlabroot
is the folder where MATLAB is installed).

[data, pkDataObject] = sbionmimport("tobramycin.txt", def,
"TreatAsEmpty", ".%);

This example shows you how to obtain the PKData object, PKDataObj, while
importing, since you will use the PKData object in fitting the model later.

The sbionmimport function accepts property-name-value pairs accepted by
dataset. For example, if the data set does not contain column headers, use
"ReadVarNames®, false to specify that sbionmimport should read values
from the first row of the file.

For information about creating a model to fit the data, see “Create a Pharmacokinetic
Model Using the Command Line” on page 4-26.

Other Resources for Importing Data

For detailed information about supported data formats and the functions for importing
data into the MATLAB Workspace, see the “Methods for Importing Data”.

You also can import data using the MATLAB Import Wizard (see “Import Images, Audio,
and Video Interactively”. Use the Import Wizard, to import data as text files (such as
.txt and .dat), MAT-files, and spreadsheet files, (such as .xIs).

The MATLAB Import Wizard processes the data source. The wizard recognizes

data delimiters, as well as row or column headers, to facilitate the process of data
selection and importation into the MATLAB Workspace. You can import the data to the
SimBiology desktop from the MATLAB Workspace.
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Import Data from a NONMEM-Formatted File Using the
SimBiology Desktop

4-16

This example shows how to import data from a NONMEM-formatted file. The data can
be in any of the following supported file formats: .xlsx, .xls, .csv, and .txt. Note: Before
importing any NONMEM formatted data from a file, remove any comments that are
present at the beginning of the file.

Load Sample Data

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Data > Load Data from File.

Navigate to the folder matlabroot\help\toolbox\simbio\examples, where
matlabroot is the folder where MATLAB is installed, and open a sample NONMEM-
formatted file named nonmem_bolus_dosing.txt. This file contains synthetically
generated data for 20 individuals who received bolus doses every 8 hours for 5 times, and
drug plasma concentrations were recorded every half hour for 60 hours.

Note: If you are using a Macintosh platform, press Command+Shift+G in the File
Browser dialog box, and enter the full path to the folder.

Configure NONMEM Data Settings

From the Text File Import dialog box, select Tab as Column Separator, and select
Use NONMEM interpretation of headers.

The CID column heading corresponds to groups of patients. Select group to identify it as
a group column, and click Update Preview.
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-
A\ Text File Import

File name: | C\Program Files\MATLABR2014 b\ helphtoclbox\simbichexamples\nonmem_belus_dosing.tdt

@ Tab () Comma () Space

Treat|.
[T Ignore the first |1

First row contains header information.
Use NOMNMEM interpretation of headers.

Columnn Separator

as missing values.

Column Heading Classification:

() Semicalon () Other:

line(s) of the file.

Update Preview

Celumn Heading Classification

CID :qroup || ~
TIME time |
CONC :dependentvariable x| =
AMT dose |
ADDL idu:use repeat |2
il dose interval > T

Preview | Raw Data

Data Preview (To change column labels, edit here before importing):

0 |Tirr1e | Dose Response s
1.0 0.0 8000.0 5355.646604 )
1.0 0.5 0.0 4652668281 I
1.0 1.0 0.0 4037.069029 0
1.0 15 0.0 3503.715106
1.0 20 0.0 3041.0904
1.0 25 0.0 20639.739338
1.0 30 0.0 2291.44579 -

[

0K

|| cancel |

Note: The import dialog maps NONMEM column headings to appropriate data
classification categories for SimBiology to interpret the data. If there is any ambiguity, a

warning message is shown at the bottom of the window.
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Click OK to load the data, and SimBiology generates a scatter plot of time versus
response for all individuals as shown next.

( 4\ simBiology * (=@ =
HOME DEFINE PLOT EXPLORE DATA VIEW C B oy 28 e (@] search vode Feld =
E one axes - - jin} a i} a @ Blank Figure g Zoom In E Data Cursor
D - el Time Time
: Do @ Delete Figure & ZoomOut 4} Rotate
Response

hd

Content| @ |E » Project » DataSetl

Raw Data x| Figurel % |

X 8@@:@00@ o]

-
s
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View Raw Data

Click the Raw Data tab at the bottom of the plot to see a tabular format of the data.
Notice that SimBiology has generated an updated Dose column and a Response
column, which is the CONC column of the original NONMEM data. You can assign
appropriate units using the drop-down list under each column.

Define Plot Settings

Instead of having shown in one axes for all patients, you can have separate axes for
each individual. Go back to the Figure 1 tab. On the Define Plot tab, in the Grouping
section, select separate axes instead of one axes. SimBiology then generates separate
axes for all individuals.
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' ™
4\ SimBiology * [E=EE
DEFINE PLOT EXPLORE DATA VIEW (g 4 =N0) I Search Model Pl E
@ separate axes ¥ D D [Z1 Blank Figure @, Zoomin | Data Cursor
i hd Time Time -
" Delete Figure Zoom Out ¥ Rotate
Open Dose Dose @ Q @z
- seatter(xy) ¥ |pecponse . » |Response Y @ Export Figure =
VIEW | GROUFING | PLOT | x | ¥ ‘ FIGURE | TOOLS —

Content ‘ ® |H» Project » DataSetl -

‘ Raw Data X| Figurel "|

D1 ID2

Noncompartmental Analysis (NCA) Parameters

If the imported data includes columns labeled independent variable, dependent
variable, and dose, then SimBiology calculates noncompartmental analysis (NCA)
parameters including AUC, MRT, terminal half life, and clearance that can be useful
initial estimates for parameter estimation tasks.
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To view NCA parameters, select Open > NCA. Since the imported data contains
multiple doses, change the Type of data to Multiple Dosing at Steady State
(Concentrations in plasma), and enter 8.0 for Dosing interval (Tau).

Content | 5 =p | @ | » Project » Data » DataSetl A
Concentration Data Column: |Response x|
Type of data: | Multiple Dosing at 5teady State (Concentrations in plasma) -
Type of dose: IV Bolus =
Dosing interval (Tau): 8.0|

Lower limit of quantization (LOQ): |0.0

The Table of NCA Parameters is then updated. In order to see the description of each
parameter and select which parameter to include in the calculation, right-click anywhere
on the table, and select NCA Parameters to Calculate.

[ Table of NCA Parameters:
Group CL MRET V =z Vrz AUC Tau
Units
1 0.4192 3.5377 1.4830 1.4896 19084 2731
2 0.432C — === = 18517.7327
3 04517 MCA Parameters to Calculate... %??11'4999
4 0.2588 Statistice Data Format... 267730864
5 0.391= 20444 8268
3 0.4123 Export Statistics... 19403.6760
7 0.4269 3.9079 16682 1.6740 18741.3616

You can also export the parameters as a dataset or separate variables to the MATLAB
Workspace using the Export Statistics option.

Filter Data

You can filter the data and select which data to plot by defining data exclusion rules. On
the Explore Data tab, click Edit Exclusions. To exclusively view the response data of
the first six individuals for day 1 and day 2, add two exclusions: ID > (6), and Time >
(48). Select Exclude Row(s) for each expression as shown next.
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P )

4\ Exclusion Editor EI@
Evaluate the following expressions on the data: ~
D - > - | Add || Delete |
Evaluate Expression Matches Exclude Row(s) Descripticn [
ID = (6] 1694
Time > (48) 480
Double click to enter expression a

Go back to the Figure 1 tab, and it now shows only the first six individual data for the
first two days.
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-
4\ SimBiglogy *

HOME

DEFINE PLOT

(== s
EXPLORE DATA VEW & 88 =3 ()] search Model 2 'E
Edit Derived Data
Content ‘ @ |E » Project » DataSetl -
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If necessary, you can add additional data exclusion expressions and share them via
Share Edits icon on the Explore Data tab

More About

“Support for Importing NONMEM Formatted Files” on page 4-7
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Create Pharmacokinetic Models
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In this section...

“Ways to Create or Import Pharmacokinetic Model” on page 4-24

“How SimBiology Models Represent Pharmacokinetic Models” on page 4-24
“Create a Pharmacokinetic Model Using the Command Line” on page 4-26
“Dosing Types” on page 4-28

“Elimination Types” on page 4-30

“Intercompartmental Clearance” on page 4-32

“Unit Conversion for Imported Data” on page 4-33

Ways to Create or Import Pharmacokinetic Model

To start modeling, you can:

+ Create a PK model using a model construction wizard that lets you specify the
number of compartments, the route of administration, and the type of elimination.

+  Extend any model to build higher fidelity models.

*  Build or load your own model. Load a SimBiology project or SBML model.

How SimBiology Models Represent Pharmacokinetic Models

The following figure compares a model as typically represented in pharmacokinetics with
the same model shown in the SimBiology model diagram. For this comparison, assume
that you are modeling administration of a drug using a two-compartment model with
any dosing input and linear elimination kinetics. (The model structure remains the same
with any dosing type.)
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Typical representation of one type

of Z-comypartiment model

Sarne J-compartment model as represented

in the SiraPiclogy desktop

T
Dose

G
Dose

—
2
E’Tg
Periggeral

Drug

Central

Comparisonof views in PE

Note the following:

+ SimBiology represents the concentration or amount of a drug in a given compartment
or volume by a species object contained within the compartment.

+ SimBiology represents the exchange or flow of the drug between compartments and
the elimination of the drug by reactions.

+ SimBiology represents intercompartmental clearance by a parameter (Q) which
specifies the clearance between the compartments.

+ SimBiology drives the dosing schedule with a combination of species (Drug and/or
Dose) and reactions (Dose -> Drug), depending on whether the administration into
the compartment follows bolus, zero-order, infusion, or first-order dosing kinetics. For
more information on the components added and parameters estimated, see “Dosing
Types” on page 4-28.

You can also view this model as a regression function, y = F(k,u), where y is the
predicted value, given values of an input u, and parameter values k. In SimBiology the
model represents F, and the model is used to generate a regression function if y, k, and u
are identified in the model.
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Create a Pharmacokinetic Model Using the Command Line

To create a PK model with the specified number of compartments, dosing type, and
method of elimination:

1

Create a PKMode IDesign object. The PKMode IDesign object lets you specify the
number of compartments, route of administration, and method of elimination, which
SimBiology uses to construct the model object with the necessary compartments,
species, reactions, and rules.

pkm = PKModelDesign;

Add a compartment specifying the compartment name, and optionally, the type of
dosing, and the method of elimination. Also specify whether the data contains a
response variable measured in this compartment and whether the dose(s) have time
lags. For example, if using the tobramycin data set [1], specify a compartment named
Central, with Bolus for the DosingType property, 1 inear-clearance for the
EliminationType property, and true for the HasResponseVariable property.

pkcl = addCompartment(pkm, “Central®, “DosingType®, "Bolus-®,
"EliminationType®, "linear-clearance”,
"HasResponseVariable®, true);

For a description of other DosingType and EliminationType property values, see
“Dosing Types” on page 4-28 and “Elimination Types” on page 4-30.

For a description of the HasResponseVariable property, see
HasResponseVariable. At least one compartment in a model must have a
response. Although SimBiology supports multiple responses per compartment, when
adding compartments to a PKModeIDesign object, you are limited to one response
per compartment.

Note: To add a compartment that has a time lag associated with any dose that
targets it, set the HaslLag property to true:

pkc_lag = addCompartment(pkm, "Central®, "DosingType", "Bolus”,

"EliminationType®, "linear-clearance”,
"HasResponseVariable®, true, "HaslLag®, true);

Or after adding a compartment, set its HasLag property to true:

pkcl.HaslLag = true;
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3 Optionally, add a second compartment named Peripheral, with no dosing,
no elimination, and no time lag. Set the HasResponseVariable property to
true. If you are using the tobramycin data set [1], skip this step and use only one
compartment.

pkc2 = addCompartment(pkm, “Peripheral®, “HasResponseVariable®, true);

The model construction process adds the necessary parameters, including a
parameter representing intercompartmental clearance Q. You can add more
compartments by repeating this step. The addition of each compartment creates a
chain of compartments in the order of compartment addition, with a bidirectional
flow of the drug between compartments in the model.

Use the handle to the compartment (pkcl or pkc2), to change compartment
properties.

4 Construct a SimBiology model object.
[modelObj, PKModelMapObj] = pkm.construct

The construct method returns a SimBiology model object (nodelObj) and a
PKMode IMap object (PKMode IMapObj) that contains the mapping of the model
components to the elements of the regression function. For more information about
the PKMode IMap object, see “Defining Model Components for Observed Response,
Dose, Dosing Type, and Estimated Parameters” on page 4-36.

Note: If you change the PKMode IDesign object, you must create a new model object
using the construct method. Changes to the PKMode IDesign do not automatically
propagate to a previously constructed model object.

5 Perform parameter fitting as shown in “Perform Data Fitting with PKPD Models” on
page 4-40.

The model object and the PKMode IMap object are input arguments for the sbionlImefit,
sbionlmefitsa and sbionlinfit functions used in parameter fitting.

For information on ... See ...

Dosing types “Dosing Types” on page 4-28

Elimination types “Elimination Types” on page 4-30

Parameter fitting “Perform Data Fitting with PKPD Models” on page
4-40
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For information on ...

See ...

Simulating the model and a
description of configuration sets

“Model Simulation” on page 3-3

Dosing Types

When creating models, SimBiology creates the following model components for each
compartment in the model, regardless of the dosing type:

Two species (Drug_CompartmentName and Dose CompartmentName) for each

compartment.

A reaction (Dose_CompartmentName -> Drug_CompartmentName) for each
compartment, governed by mass action kinetics.

A parameter (ka_CompartmentName) for each compartment, representing
the absorption rate of the drug when absorption follows first-order kinetics.
This is the forward rate parameter for the Dose_CompartmentName ->

Drug_CompartmentName reaction.

A parameter (TKO_CompartmentName) for each compartment, representing the
duration of drug absorption when absorption follows zero-order kinetics.

A parameter (TLag_CompartmentName) for each compartment, representing the time
lag for any dose that targets that compartment and also that is specified as having a

time lag.

For dosing types that have a fixed infusion or absorption duration (infusion and zero-
order), you can use overlapping doses. The doses are additive.

The following table describes the dosing types, the default parameters to estimate, and
lists the model components created and used for dosing.

4-28

Dosing Type  |Description SimBiology Model Components Default Parameters to
Used Estimate

" " (empty No dose The species None

string) (Drug_CompartmentName) in
each compartment

SimBiology Assumes that the drug The species None

desktop — amount is increased (Drug_CompartmentName) in

bolus instantly at the dose each compartment

time.
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Dosing Type | Description SimBiology Model Components Default Parameters to
Used Estimate

Command line |In the SimBiology model,
— Bolus the initial concentration

of the drug is based on

dose amount and volume

of the compartment

containing the drug.
SimBiology Assumes that the infused | The species None
desktop — drug amount increases (Drug_CompartmentName) in
infusion at a constant known each compartment

Command line
— Infusion

absorption (or infusion)
rate over a known
duration.

The imported data set
must contain the rate and
not an infusion duration.
SimBiology uses this
information to change the
species concentration at
the constant rate over the
duration specified in the
data set.

SimBiology
desktop —
zero-order

Command line
— ZeroOrder

Assumes that the drug is
added at a constant rate
over fixed, but unknown
duration.

* The species
Drug_CompartmentName in
each compartment

* The parameter
(TkO_CompartmentName)
in each compartment that
has zero-order dosing. This
parameter represents the
duration of drug absorption

TkO_CompartmentNa
(absorption duration)
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first-order

Command
line —
FirstOrder

absorbed is not constant.

In the SimBiology
model, absorption rate is
assumed to be governed
by mass-action kinetics.

representing the dose
amount before it is absorbed

A species
(Drug_CompartmentName)
for each compartment

A parameter
(ka_CompartmentName)
representing the absorption
rate of the drug

A MassAction reaction
(Dose_CompartmentName
-
Drug_CompartmentName)
with forward rate parameter
(ka_CompartmentName)

Dosing Type Description SimBiology Model Components Default Parameters to
Used Estimate

SimBiology Assumes that the rate * A species ka_CompartmentNam

desktop — at which the drug is (Dose_CompartmentName) |(absorption rate)

11

If you are using a custom model, or want to simulate a model with the dosing schedule
applied, see the following additional sources of information:

For information on ...

See ...

Preparing the model before
simulating

“Prerequisites for Using Custom SimBiology
Models in Data Fitting” on page 4-36

Elimination Types

{Elimination

4-30

desktop — Linear

Rate, Volume}

mass-action kinetics
in the elimination
of the drug. In

the SimBiology
model, elimination

Elimination Type Description SimBiology Model Default Parameters to
Components Created Estimate
SimBiology Assumes simple * A parameter +  Compartment volume

representing the
elimination rate
(ke_CompartmentName

+ A MassAction
reaction (drug

(Capacity property)

Elimination
rate constant
(ke_CompartmentNam
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Elimination Type

Description

SimBiology Model
Components Created

Default Parameters to
Estimate

Command line —

is specified by mass-

—> null) with

Inter-compartmental

"linear” action kinetics with forward rate parameter clearance (Q) when
the elimination rate (ke_CompartmentName| there is more than one
constant specified specific to the compartment.
by the forward rate compartement
parameter (ke). See

“Intercompartmental
Clearance” on page
4-32.

SimBiology Assumes simple A parameter +  Compartment volume

desktop — Linear |mass-action kinetics representing

{Clearance, in the elimination the clearance (Capacity property)

Volume} of the drug. In the (C1_CompartmentName|. (learance

Command line
— "linear-
clearance”

SimBiology model,
similar to Linear
{Elimination
Rate, Volume}.
But, in addition,
this option lets you
specify the model in
terms of clearance

(CI) where, Cl = ke

* volume).

A parameter
representing

the elimination

rate constant
(ke_CompartmentName

An
InitialAssignment
rule that initializes
ke_CompartmentName
based on the

initial values for
Cl_CompartmentName
and compartment
volume

A MassAction
reaction (drug

—> null) with
forward rate parameter
(ke_CompartmentName

(C1_CompartmentNam

Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page
4-32.
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Command line —
"enzymatic*

kinetics.

A parameter for
maximum velocity
(Vm_CompartmentName

A reaction with
Michaelis-Menten
kinetics (drug ->
null), with kinetic

law parameters
Vm_CompartmentName
and
Km_CompartmentName

Elimination Type Description SimBiology Model Default Parameters to
Components Created Estimate

SimBiology desktop |Assumes that +  Parameter +  Compartment volume

— Enzymatic elimination is representing the

(Michaelis- governed by Michaelis constant, (Capacity property)

Menten) Michaelis-Menten (Km_CompartmentName| . Pgrameter

(Km_CompartmentName

Parameter
(Vm_CompartmentName

Inter-compartmental
clearance (Q) when
there is more than one
compartment.

See
“Intercompartmental
Clearance” on page
4-32

Intercompartmental Clearance

The compartments created when you generate a SimBiology model form a chain and
each pair of linked compartments are connected by a transport reaction similar to

linear elimination. The addition of two compartments, C1 and C2, generates a reversible
mass-action reaction C1.Drug_Cl <-> C2.Drug. The forward rate parameter is the
compartmental clearance, Q,,, divided by the volume of C1. The reverse rate parameter is

Q12, divided by the volume of C2.

The process of adding each pair of compartments in the chain C, and C,, generates the
following model components:

* A parameter Q,, representing the compartmental clearance between those two

compartments. This parameter is added to the list of parameters to be estimated
(Estimated property of PKMode IMap object).

* A parameter (kmn) representing the rate of transfer of the drug from Cm to Cn, where
kmn = an/Vm-

+ A parameter (knm) representing the rate of Cn to Cm, where K., = Qun/Va.
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* A reversible mass-action reaction between the two compartments, Cm.Drug_Cm <->
Cn.Drug_Cn, with forward rate parameter kmn, and reverse rate parameter knm.

* An initial assignment rule that initializes the value of the parameter kmn, based on
the initial values for Cm and Qmn.

* An initial assignment rule that initializes the value of the parameter knm, based on
the initial values for Cn and Qmn.

Unit Conversion for Imported Data

Unit conversion converts the matching physical quantities to one consistent unit system
in order to resolve them. This conversion is in preparation for correct simulation, but
SimBiology returns the physical quantities in the model in units that you specify.

Regardless of whether unit conversion is on or oFf, you must express dosing data in
amount. By default, Unit Conversion is off, so you must ensure that units for the data
and the model are consistent with one another.

If Unit Conversion is on, you must specify units. If using the SimBiology desktop,
specify units in the Raw Data tab, when data is selected in the Project Explorer. If
using the command line, specify units in the PKData object.

Parameters in the model have default units. If unit conversion is on, you can change the
units as long as the dimensions are consistent. These default units, which you might use
to specify the values for the initial guess, are as follows.

Physical Quantity or Model Parameter Unit

Capacity (compartment volume) liter

First-order elimination rate 1/second

Km — Michaelis constant milligram/liter

Vm — (Vmax) Maximum reaction-velocity milligram/second
(Michaelis-Menten kinetics)

Clearance liter/second
TkO (absorption duration) second
ka (absorption rate) 1/second

Use the configuration settings options to turn unit conversion on or ofF. For details, see
“Model Simulation” on page 3-3.
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For details on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated” on page 1-21.
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About Data Fitting in PKPD Models

In this section...

“Data Fitting Functionality” on page 4-35
“Prerequisites for Data Fitting” on page 4-36

“Prerequisites for Using Custom SimBiology Models in Data Fitting” on page 4-36

Data Fitting Functionality

SimBiology lets you perform individual and population fitting on grouped data. This
functionality uses Statistics and Machine Learning Toolbox features (Version 7.3 or
later).

* Individual fit — Fit data separately for each individual using the nonlinear least
squares method, estimate parameters, and calculate residuals and the estimated
coefficient covariance matrix.

* Population fit — Estimate the fixed effects and the random sources of variation on
parameters, using nonlinear mixed-effects models.

You can use the following methods to estimate the fixed effects:

* LME — Linear mixed-effects approximation
RELME — Restricted LME approximation
* FO — First-order estimate

*  FOCE — First-order conditional estimate
The following results are returned for population fitting:

* The maximized log-likelihood for the fitted model

* The estimated error variance for the fitted model

* The Akaike information criterion for the fitted model

* The Bayesian information criterion for the fitted model
* The standard errors for the estimates of the fixed effects
* The error degrees of freedom for the model

* The weighted residuals for the fitted model

In addition, you can generate diagnostic plots that show:
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* The predicted time courses and observations for an individual or the population
*  Observed versus predicted values

*  Weighted residuals versus time, group, or predictions

* Distribution of the weighted residuals

* A box-plot for random effects or parameter estimates from individual fitting

Prerequisites for Data Fitting

Before you fit parameters, the SimBiology desktop or the MATLAB Workspace must
contain the following:

+ Data to use in the fitting (See “Importing Data — Supported Files and Data Types” on
page 4-7 for more information.)

* A model to fit (See “Create Pharmacokinetic Models” on page 4-24 for more
information.)

If you plan to use the command line, see the following for more information:
“Perform Data Fitting with PKPD Models” on page 4-40

Prerequisites for Using Custom SimBiology Models in Data Fitting

Overview

If you created a PK model using either the PKMode IDesign object's construct method
at the command line or the wizard in the SimBiology desktop, you can skip this section.
This section provides information about working with a custom SimBiology model.

When using a custom model, you must provide information about whether dosing is
applicable and define which components of the SimBiology model represent the observed
response, the dose, and the estimated parameters. Use the PKMode IMap object to define
these settings as shown in “Defining Model Components for Observed Response, Dose,
Dosing Type, and Estimated Parameters” on page 4-36.

Defining Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters

The PKMode IMap object holds information about the dosing type and defines which
components of the SimBiology model represent the observed response, the dose, and the
parameters to be estimated.
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If you are using a custom SimBiology model that you did not create using either
the PKMode IDesign object's construct method or the wizard, you must create a
PKMode IMap object to define these relationships.

Consider the following regression function, y = f(k,u), where y is the measured or
observed response, given values of an input u, and parameter values k. In SimBiology,
the model represents ¥, which is used to generate the regression function, if y, k, and u
are identified in the model. You must, therefore, use the PKMode IMap object to define
which components of the model represent y, k, and u. If applicable, the PKMode IMap
object also needs information on the type of dosing or input being given to the model.

1 Import an SBML model:
modelObj = sbmlimport("lotka®™);
2 Create a PKMode IMap object:

PKMode IMapObj = PKModelMap;

3 Use the name of the model component to specify the corresponding property in the
PKMode IMap object.

Model Component Represents PKModelMap Object Property
Object being driven by an input Dosed

Measured response Observed

Parameters to be estimated Estimated

For example:

set(PKModelMapObj, "Observed®, “unnamed.yl");
set(PKModelMapObj, "Estimated®, {"Reactionl.cl®, "Reaction2.c2"});

Note: When specifying species names, qualify the name with the compartment
name in the form compartmentName.speciesName (for example,

nucleus.DNA). For names of parameters scoped at the reaction level, use
reactionName.parameterName. For parameters scoped at the model level, you do
not have to qualify the name.

4 Use the DosingType property to specify the type of dosing, if applicable. The
allowed types are " ", "Bolus”, "Infusion”, "FirstOrder”, and "ZeroOrder".

For example:
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set(PKModelMapObj, "DosingType®, "Bolus®);

Note: When using custom models with DosingType set to zero-order, you
must include a parameter that represents the duration of drug absorption.
Set the ZeroOrderDurationParameter property of the PKMode IMap object
to the name of the duration parameter. For example, set(PKMode IMapObj ,
"ZeroOrderDurationParameter®, "Kdo");.

The previous example sets the observed response to a species y1, contained by a
compartment (unnamed), and sets the parameters to be estimated to the parameters cl
and c2 that are scoped to the reactions, Reactionl and Reaction2, respectively.

For information on ... See ...

PKMode IMap object properties and |PKModelMap object Dosed,
allowed values DosingType, Estimated, and Observed,
ZeroOrderDurationParameter

Allowed dosing types “Dosing Types” on page 4-28

Parameter scoping “When Reactions, Rules, and Events Specify
Parameters” on page 1-16

Parameter fitting “Perform Data Fitting with PKPD Models” on page
4-40

Dosing Multiple Compartments in a Model

1  Use the name of the model component to specify the Dosed property in the
PKMode IMap object.

For example, assume that a model contains two compartments named Central and
Peripheral. Specify the species names in the dosed compartments. For example:

set(PKModelMapObj, “Dosed, {"Central_Drug_Central®,
"Peripheral .Drug_Peripheral®});

2 Use the DosingType property to specify the type of dosing if applicable. The allowed
types are " ", "Bolus”, "Infusion”, "FirstOrder’, and "ZeroOrder". When
specifying dosing for multiple compartments, the order in the Dosed property is the
order in which the dosing type is applied.
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For example, if Central takes zero-order dosing and Peripheral takes a first-
order dosing enter:
set(PKModelMapObj, "DosingType®, {"ZeroOrder®, "FirstOrder"});

Because the model includes zero-order as a DosingType, you must include

a parameter that represents the duration of drug absorption and is used

when simulating the model with dosing information or during fitting. Set the
ZeroOrderDurationParameter property of the PKMode IMap object to the name of
the duration parameter. For example,

set(PKModelMapObj, "ZeroOrderDurationParameter®, {"Kdo", ""})

Specify the parameters in the same order as the species in the Dosed property.
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Perform Data Fitting with PKPD Models

4-40

In this section...

“Data Fitting Workflow” on page 4-40

“Specify and Classify the Data to Fit” on page 4-41

“Specify Solver Type and Options for Fitting” on page 4-43

“Set Initial Estimates” on page 4-43

“Specify a Nonlinear, Mixed-Effects Model” on page 4-44
“Specify a Covariate Model” on page 4-46

“Specify the Covariance Pattern of Random Effects” on page 4-48
“Specify an Error Model” on page 4-49

“Specify Parameter Transformations” on page 4-50

“Perform Population Fitting” on page 4-51

“Simultaneously Fitting Data from Multiple Dose Levels” on page 4-55
“Perform Individual Fitting” on page 4-55

Data Fitting Workflow

The following steps show one of the workflows you can use at the command line to fit a
PK model and estimate parameters:

Import data as shown in “Importing Data” on page 4-13.

2 Specify the structural model by creating a PK model as shown in “Create a
Pharmacokinetic Model Using the Command Line” on page 4-26. Alternatively, if
you have a SimBiology model that you want to use in fitting, see “Prerequisites for
Using Custom SimBiology Models in Data Fitting” on page 4-36.

3 Classify the data set to use in fitting. See “Specify and Classify the Data to Fit” on
page 4-41.

4  Specify the initial guesses for the parameters to be estimated, as shown in “Set
Initial Estimates” on page 4-43.

5 Perform individual or population fits:

For individual fits:
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+ (Optional) Specify an error model or weights. See “Specify an Error Model” on
page 4-49.

+ (Optional) Set tolerances.
+ (Optional) Specify maximum iterations.

+  (Optional) Specify to pool the data, which simultaneously fits data from
multiple dose levels using the same model parameters for each dose.

*  For population fits:
+  Specify the statistical model:

Specify the covariate model and the covariance matrix. See “Specify a
Covariate Model” on page 4-46 and “Specify the Covariance Pattern of
Random Effects” on page 4-48.

(Optional) Specify the error model. See “Specify an Error Model” on page
4-49.

+ (Optional) Set tolerances.
* (Optional) Specify maximum iterations.

6 Obtain and visualize results.

Specify and Classify the Data to Fit

In order to use the imported data in fitting, you must identify required columns in the
data set that was previously imported as shown in “Importing Data” on page 4-13.

Use the PKData object to specify the data set containing the observed data to use
in fitting. The properties of the PKData object specify what each column in the data
represents.

To create the PKData object:
1 Create the PKData object for the data set data.

pkDataObject = PKData(data);
PKData assigns the data set data to the read-only DataSet property.

2 Use the column headers in the data set to specify the following properties for the
column in the data set.
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Column in Data Set Represents PKData Object Property
Group identification labels GroupLabel
Independent variable IndependentVarLabel
(For example, time)

Dependent variable DependentVarLabel
(For example, measured response)

Amount of dose given DoselLabel

Rate of infusion (when applicable). Data |RatelLabel

must contain rate (amount/time) and

not infusion time.

Covariates CovariatelLabels
(For example, age, gender, weight)

For example, for the tobramycin data set [1]:

pkDataObject._GroupLabel
pkDataObject. IndependentVarLabel
pkDataObject.DependentVarLabel
pkDataObject.DoselLabel
pkDataObject.CovariatelLabels

“ID":
"Time";

"Response”;

"Dose”;
{"WT*","HT","AGE", "SEX",

*CLCR"};

Note: For the subset of data belonging to a single group (as defined by the column
in your data set that represents group identification labels, which you map to the
GroupLabel property), the software allows multiple observations made at the same
time. If this is true for your data, be aware that:

* These data points are not averaged, but fitted individually.

+ Different number of observations at different times cause some time points to be

weighted more.

Tip If dosing applies to more than one compartment in the model, specify the

DoselLabel property as follows:

pkDataObject.DoseLabel = {"Dosel”, "Dose2"};
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Dosel and Dose2 are names of columns containing dose information for
compartments. A one-to-one relationship must exist between the number and order
of elements in the DoselLabel property and the Dosed property of the corresponding
PKMode IMap object.

Tip If your model measures multiple responses, specify the DependentVarLabel
property as follows:

pkDataObject._DependentVarLabel = {"Responsel®”, "Response2®};
Responsel and Response?2 are names of columns containing response
measurements. A one-to-one relationship must exist between the number and order
of elements in the DependentVarLabel property and the Observed property of the
corresponding PKMode IMap object.

When you assign a column containing group identification labels to the GroupLabel
property, PKData sets these read-only properties as follows:

+ The GroupNames property is set to the unique names found in the group column.

The GroupID property is set to an integer corresponding to the unique names
found in the group column.

Specify Solver Type and Options for Fitting

If you specify a stochastic solver and options in the Configset object associated with
your model, be aware that during fitting SimBiology temporarily changes:

+ SolverType property to the default solver of odel5s
+ SolverOptions property to the options last configured for a deterministic solver

Set Initial Estimates

Caution If your model includes active variants that specify alternate values for the
parameters to estimate, the variants are ignored for those parameters during fitting.

To set the initial estimates (or initial guesses) for the parameters with fixed effects to
estimate, first identify the sequence of the parameters in the model by querying the
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PKMode IMap object. Next, construct a vector, betaO, containing the initial conditions.
For information about PKMode IMap objects, see step 4 in “Create a Pharmacokinetic
Model Using the Command Line” on page 4-26.

1 Query the Estimated property of the PKMode IMap object:
PKMode IMapObj -Estimated

MATLAB returns the sequence of the parameters to be estimated. For example:

ans =

"Central ™
"Cl_Central-

2 Set the initial estimates for the parameters. For example:

betaO = [10.0, 1.0];

For information on ... See ...
The parameters added to the model + “Dosing Types” on page 4-28
+ “Elimination Types” on page 4-30
Default units for the above parameters “Unit Conversion for Imported Data” on
page 4-33

Specify a Nonlinear, Mixed-Effects Model

Suppose data for a nonlinear regression model falls into one of m distinct groups i =1, ...,
m. (Specifically, suppose that the groups are not nested.) To specify a general, nonlinear,
mixed-effects (NLME) model for this data:

1  Define group-specific model parameters @; as linear combinations of fixed effects
and random effects b;.

2 Define response values y; as a nonlinear function f of the parameters and group-
specific covariate variables X;.

The model is:

¢; = Ai0 + Bm;, where n; ~N(0,'¥)
¥ =@, X;) +e
Alternatively, log y; =log f(¢;, X;) +¢€;
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This formulation of the nonlinear, mixed-effects model uses the following notation:

®; A vector of group-specific model parameters

0 A vector of fixed effects, modeling population parameters

n; A vector of multivariate, normally distributed, group-specific, random effects
A; A group-specific design matrix for combining fixed effects

B; A group-specific design matrix for combining random effects

X; A data matrix of group-specific covariate values

¥i A data vector of group-specific response values

f A general, real-valued function of ¢; and X;

& + For sbionlmefit, you can specify different error models as shown in

“Specify an Error Model” on page 4-49.

* For sbionlmefitsa, you can specify different error models as shown in
“Specify an Error Model” on page 4-49.

p A covariance matrix for the random effects

o> The error variance, assumed to be constant across observations

For example, consider a one-compartment model with first-order dosing and linear
clearance. The group-specific parameters (@) in the model are clearance (Cl),
compartment volume (V), and absorption rate constant (k,). From the model:

Cl 1 0 0) Oa 1 00 N
VI =0 1 0| 6v |[+/0 1 0 nv
ka| |0 0 164, ) (0 0 1) n,

In SimBiology, B; is an identity matrix. That is, sbionImefit does not support the
specification of a different random-effects design matrix. You can alter the design
matrices, as necessary, to introduce weighting of individual effects.

The Statistics and Machine Learning Toolbox function nImefit fits the general,
nonlinear, mixed-effects model to data, estimating the fixed and random effects. The
function also estimates the covariance matrix W for the random effects. Additional
diagnostic outputs allow you to assess trade-offs between the number of model
parameters and the goodness of fit. See “Mixed-Effects Models” in the Statistics and
Machine Learning Toolbox documentation for more information.
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Specify a Covariate Model

Construct a CovariateModel object to define the relationship between parameters
and covariates. After constructing the object, modify the FixedEffectValues
property of the object before using the object as an input argument to sbhionImefit or
sbionlmefitsa, to estimate nonlinear mixed effects.

If the “Specify a Nonlinear, Mixed-Effects Model” on page 4-44 assumes a group-
dependent covariate such as weight (w), the model becomes:

)

cly (1 0 0 w 9‘” 1 0 0) na

V:01009V+010 nv

ka| [0 0 1 0] ke 0 0 1]m,
0ci/w

Thus, the parameter for clearance (CI) for an individual is Cl; = 0¢; + O¢1/0 * wi + 1y,

Use the following procedure to specify a covariate model. If you are using the tobramycin
data set, make sure you first complete the following procedures:

+ “Importing Data from NONMEM-Formatted Files” on page 4-14

+ “Create a Pharmacokinetic Model Using the Command Line” on page 4-26
+ “Specify and Classify the Data to Fit” on page 4-41

+ “Set Initial Estimates” on page 4-43

1 Use the CovariateModel constructor function to construct an empty
CovariateModel object:

covModel = CovariateModel;

2 Set the Expression property of the object to define the relationship between
parameters and covariates in the CovariateModel object, where Cl, v, and ka are
parameters, weight is a covariate, thetal, theta2, theta3, and theta4 are fixed
effects, and etal, eta2, and eta3 are random effects.

covModel .Expression = {"Cl = exp(thetal + thetad*weight + etal)",...
v = exp(theta2 + eta2)",...
"ka = exp(theta3 + eta3)"};
3 Display a list of the descriptions of the fixed effects (thetal and theta?2) in the
CovariateModel object:
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disp("Fixed Effects Descriptions:™);
disp(covModel _FixedEffectDescription)

Your output appears as follows, where each string describes the role of a fixed effect
in the expression equation:

Fixed Effects Descriptions:
1t
"v
“Ka"
"Cl/weight”
Use the constructDefaul tFixedEffectValues method of the CovariateModel
object to create a structure containing the initial estimates for the fixed effects in the
object. The initial estimates in this structure are set to a default of zero:

initialEstimates = covModel .constructDefaultFixedEffectValues

Your output appears as:

initialEstimates =
thetal: O
theta2: 0
theta3: 0
theta4: 0

Edit the initialEstimates structure to set the initial estimates of the fixed
effects:

initialEstimates.thetal = 1.408;
initialEstimates.theta2 = 0.061;
initialEstimates.theta3 = 0.31;

Tip Typically, these initial estimates are values you determine from a previous fit of
the data.

Use the modified initialEstimates structure to update the FixedeffectValues
property of the CovariateModel object:

covModel .FixedEffectValues = initialEstimates;

Now covModel, the CovariateModel object, is ready to submit as an input
argument to sbionImefit or sbionlmefitsa.
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Specify the Covariance Pattern of Random Effects

By default, the function you use to perform population fits (nImefit or nImefitsa)
assumes a diagonal covariance matrix (no covariance among the random effects). To
specify a different covariance pattern of random effects, use the "CovPattern” option.
In the previous example, assuming that each of the parameters has random effects and
that CI and V exhibit covariance, the covariance pattern of random effects would be a
logical array:

110
110
001

Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 1, O0; 1, 1, O; O, O, 1];
Specify the arguments for sbionlmefit or sbionlmefitsa:

[results, simdatal, simdataP] = sbionlmefit(modelObj, ...
PKModeIMapObj, pkDataObject, betaO, options)

If you are using the tobramycin data set [1], do the following:

1

Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 0; 0, 1];
Specify the arguments for sbionlmefit:

[results, simdatal, simdataP] = sbionlmefit(modelObj, ...
PKModelMapObj, pkDataObject, betaO, options)

results =
NLMEResults handle

Properties:
FixedEffects: [2x3 dataset]
RandomEffects: [97x2 dataset]
IndividualParameterEstimates: [97x2 dataset]
PopulationParameterEstimates: [97x2 dataset]
RandomEffectCovarianceMatrix: [2x2 dataset]
EstimatedParameterNames: {2x1 cell}
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CovariateNames: {"WT® “HT" “AGE" *"SEX" "CLCR"}
FixedEffectsStruct: [1x1 struct]
stats: [1x1 struct]

results.FixedEffects

ans =
Description Estimate StandardError
"Central” 3.0478 0.064369
"Cl_Central” 1.3054 0.061095

For more information, see nImefit or nImefitsa in the Statistics and Machine
Learning Toolbox documentation.

Fitting the model and estimating the covariance matrix ¥ often leads to further
refinements. A relatively small estimate for the variance of a random effect suggests that
it can be removed from the model. Similarly, relatively small estimates for covariances
among certain random effects suggest that a full covariance matrix is unnecessary. Since
random effects are unobserved, ¥ must be estimated indirectly. Specifying a diagonal or
block-diagonal covariance pattern for ¥ can improve convergence and efficiency of the
fitting algorithm.

Specify an Error Model

You can specify any of the following error models when using the sbionlinfit,
sbionlmefit, or shionlmefitsa function. Each model defines the error using a
standard normal (Gaussian) variable e, the function value f, and one or two parameters,
a and b. The default error model is "constant”.

+ "constant®:y=f+ a*e (default)

+ "proportional®:y=f + b*abs(f)*e

+ "combined®:y=f+ (atb*abs(f))*e

+ "exponential ": y = ffexp(a*e), or equivalently log(y) = log(f) + a*e

To define an error model:

1 Create an optionStruct input argument and set the ErrorModel field to specify
one of the above error models. For example:

optionStruct._ErrorModel = "proportional”;
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2 Specify the optionStruct input argument for sbionlinfit, sbionlmefit, or
sbionlmefitsa, as shown in “Perform Individual Fitting” on page 4-55 or
“Perform Population Fitting” on page 4-51.

See also or nlinfit, nlmefit, or nImefitsa in the Statistics and Machine Learning
Toolbox documentation.

Specify Parameter Transformations

To specify parameter transformations, use the ParamTransform option in

sbionlinfit, sbionlmefit and sbionlmefitsa. The ParamTransform option lets
you specify either no transformation, or the log, probit, or logit transformation.

Note: Do not use the ParamTransform option to specify parameter transformations
when providing a Covar iateModel object to a fitting function. The CovariateModel
object provides the parameter transformation.

The underlying algorithm in nImefit assumes that parameters follow a normal
distribution. This assumption may not hold for biological parameters that are
constrained to be positive, such as volume and clearance. You may specify a
transformation function for the estimated parameters, so that the transformed
parameters follow a normal distribution.

By default, the SimBiology fitting functions choose a log transform for all estimated
parameters. Parameters that are constrained between the values 0 and 1, like absorption
fraction, can be transformed by the probit or logit transformations described below.

The probit function is the inverse cumulative distribution function (CDF) associated
with the standard normal distribution. To apply the probit transform to a variable x
in MATLAB, use the Statistics and Machine Learning Toolbox function norminv: t =
norminv(x). To untransform a variable t, use the function normcdf: x = normcdf(t).

The logit function is the inverse of the sigmoid function. To apply the logit transform
to a variable X in MATLAB, use the following expression: t = log(x) - log(1-x). To
untransform the variable €, use x = 1/(1+exp(-t)).

1  For the ParamTransform option, specify a vector of values equal to the number of
parameters to be estimated. The values must be one of the integer codes listed in
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nimefitsa or nImefit specifying the transformation for the corresponding value of
the parameters to be estimated. For example

options.ParamTransform = [0 1 2];

See nImefit and nImefitsa for more information.

Specify the arguments for sbionlmefit or sbionImefitsa, as shown in “Perform
Population Fitting” on page 4-51.

For individual fitting, see “Perform Individual Fitting” on page 4-55.

Perform Population Fitting

The sbionImefit and sbionlImefitsa functions let you specify a SimBiology model
that you want to use in fitting. These functions use the nImefit and nImefitsa
functions from the Statistics and Machine Learning Toolbox to fit data with both fixed
and random sources of variation using nonlinear mixed-effects and return the estimates.
Both nImefitand nImefitsa fit the model by maximizing an approximation to the
marginal likelihood with random effects integrated out assuming the following:

Random effects are multivariate, normally distributed, and independent between
groups.

Observation errors are independent, identically normally distributed, and
independent of random effects.

(Optional) Set the tolerance or maximum iteration options. Use an options structure
that is an input argument for sbionlmefit or sbionlmefitsa:

optionStruct.Options.TolX = 1.0E-4;
optionStruct.Options.TolFun = 1.0E-4;
optionStruct.Options.Maxlter = 200;

Specify the model object, the PKMode IMap object, the PKData object, the
PKCovariateModel object, a vector containing the initial estimates for the fixed
effects, and the options:

[results, simdatal, simdataP] = sbionlmefit(modelObj, ...
PKModeIMapObj, pkDataObject, CovariateModelObject, betaO, optionStruct);

Note: If your population fit uses multiple doses, make sure each element in the
Dosed property of the PKMode IMap object is unique.
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Note: In your PKData object, for each subset of data belonging to a single group
(as defined in the data column specified by the GroupLabel property), the software
allows multiple observations made at the same time. If this is true for your data, be
aware that:

These data points are not averaged, but fitted individually.

Different number of observations at different times cause some time points to be
weighted more.

sbionlmefit and sbionImefitsa return the following:

results, an object containing estimated values and other statistics. For more
information, see the sbionlmefit and sbionlmefitsa reference pages.

+ simdatal, a SimData object containing the data from simulating the model
using the estimated parameter values for individuals, which includes both the
fixed and random effects.

+ simdataP, SimData object containing the data from simulating the model
using the estimated parameter values for the population, which includes only the
fixed effects.

Plot the data from the data set. For example, in the imported data set used for
fitting, ds, ID, Time, and Response are the column headers for the columns
containing group IDs, time, and the response variable, respectively.

p = sbiotrellis(ds, "ID", "Time", "Response®)

Note: If your data set has multiple responses, with column headers Responsel and
Response2 containing the response variables, you plot the data as follows:

Response = {"Responsel”, "Response2”}
p = sbiotrellis(ds, "ID", "Time", Response)

Use the plot method on the trellis plot object p, returned by sbiotrellis to
overlay data, using default values for the second and third input arguments.

p.-plot(simdataP, [], "", PKModelMapObj .Observed);

For a description of the results, see sbionlmefit in the SimBiology documentation.
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For more information, see the following topics in the Statistics and Machine Learning
Toolbox documentation:

+ “Nonlinear Regression”
+ “Mixed-Effects Models”
+ nimefit

Obtaining the Status of Fitting

The sbiofitstatusplot function dynamically plots the progress of the fitting task.
During the task, the function plots the fixed effects (8), the estimates for the diagonal
elements of the covariance matrix for the random effects (&), and the log-likelihood.
This functionality is useful for large and complex models when you expect the time to
return the results to be longer than a few minutes. Use the options structure that is an
argument for the sbionlImefit function:

% Create options structure with "OutputFcn”.
options.Options.OutputFcn = @sbiofitstatusplot;

% Pass options structure with OutputFcn to sbionlmefit function.
results = sbionlmefit(..., options);

The following figure shows the type of plots obtained.
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Tips for interpreting status plots:

100 200 300

The fitting function tries to maximize the log-likelihood. When the plot begins to
display a flat line, this might indicate that maximization is complete. Try setting
the maximum iterations to a lower number to reduce the number of iterations you
need and improve performance. For information on how to set iteration options, see

“Perform Population Fitting” on page 4-51.

Plots for the fixed effects (8) and the estimates for the diagonal elements of the
covariance matrix for the random effects (&), should show convergence. If you see
oscillations, or jumps without accompanying improvements in the log-likelihood, the
model may be over-parameterized. Try the following:
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* Reduce the number of fixed effects.
* Reduce the number of random effects.

+  Simplify the covariance matrix pattern of random effects.

See also shiofitstatusplot in the SimBiology documentation.

Simultaneously Fitting Data from Multiple Dose Levels

When performing population fitting using nonlinear regression, you can simultaneously
fit data from multiple dose levels by either:

Using sbionImefit with a CovariateModel object input argument and omitting
the random effect (eta) from the expressions in the CovariateModel object.

Using sbionImefit with an InitEstimates input argument and setting the
REParamsSelect field or name-value pair input argument to a 1-by-n logical vector,
with all entries set to False, where n equals the number of fixed effects.

Perform Individual Fitting

The sbionlinfit function lets you specify a SimBiology model to fit using the nlinfit
function (individual fit). The nlinFfit function uses nonlinear least squares and returns
parameter estimates, residuals, and the estimated coefficient covariance matrix.

1

(Optional) Specify an error model, set the tolerance, set the maximum iteration, or
set the data pooling option, which lets you simultaneously fit data from multiple dose
levels using the same model parameters for each dose. Use an options structure that
is an input argument for sbionlinfit:

optionStruct._ErrorModel = "proportional”;
optionStruct.TolX = 1_.0E-8;
optionStruct.TolFun = 1.0E-8;
optionStruct._Maxlter = 100;
optionStruct.Pooled = true;

Specify the model object, the PKMode IMap object, the PKData object, a vector
containing the initial estimates for the fixed effects, and the options:

[results, simdatal] = sbionlinfit(modelobj, ...
PKModeIMapObj, PKDataObj, betaO, optionStruct);
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Note: If your individual fit uses multiple doses, ensure each element in the Dosed
property of the PKModeIMap object is unique.

Note: In your PKData object, for each subset of data belonging to a single group (as
defined in the data column specified by the GroupLabel property), the software
allows multiple observations made at the same time. If this is true for your data, be
aware that:

* These data points are not averaged, but fitted individually.

+ Different number of observations at different times cause some time points to be
weighted more.

sbionlinFfit returns the following:

* A results array of objects, with each object containing the following for one
group:

+ ParameterEstimates — A dataset array containing fitted coefficients and
their standard errors.
+ CovarianceMatrix — Estimated covariance matrix for the fitted coefficients.

+ beta — Vector of scalars specifying the fitted coefficients in transformed
space.

* R — Residuals.

+ J — Jacobian of modelObject.

+ COVB — Estimated covariance matrix for the transformed coefficients.
+ mse — Scalar specifying the estimate of the error of the variance term.

+ errorparam — Estimated parameters of the error model or an empty array if
you specified weights using the "Weights" name-value pair argument.

+ simdatal, a SimData object containing the data from simulating the model
using the estimated parameter values, for individuals.

Plot the data from the data set. For example, in the imported data set (ds), ID, Time
and Response are the column headers for the columns containing group IDs, time,
and the response variable respectively.
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p = sbiotrellis(ds, "ID", "Time", "Response®)

Note: If your data set has multiple responses, with column headers Responsel and
Response2 containing the response variables, then plot the data as follows:

Response = {"Responsel”, "Response2”}
p = sbiotrellis(ds, "ID", "Time", Response)

4  Use the plot method on the trellis plot object p, returned by sbiotrellis to overlay
data, using default values for the second and third input arguments.

p-plot(simdatal, [], °", PKModelMapObj .Observed);

For more information, see “Nonlinear Regression” and nlinfit in the Statistics and
Machine Learning Toolbox documentation.
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This example shows how to perform a Monte Carlo simulation of a pharmacokinetic/
pharmacodynamic (PK/PD) model for an antibacterial agent. This example is adapted
from Katsube et al. [1] This example also shows how to use the SimBiology exported
model to perform parameter scans in parallel.

This example requires Statistics and Machine Learning Toolbox™. The performance can
be improved if you have the Parallel Computing Toolbox™ software.

Background

Katsube et al. [1] used a PK/PD modeling and simulation approach to determine the most
effective dosage regimens for doripenem, a carbapenem antibiotic. The objectives of their
study were:

+ Develop a PK/PD model to describe the antibacterial effect of doripenem against
several Pseudomonas aeruginosa strains

+ Use Monte Carlo simulations to compare the efficacy of four common antibiotic dosage
regimes, and to determine the most effective dosing strategy

+ Investigate the effect of renal function on the antibacterial efficacy of the treatments

In this example, we will implement the antibacterial PK/PD model developed by Katsube
et al. [1] in SimBiology®, and replicate the results of the Monte Carlo simulation
described in their work.

References

[1] T. Katsube, Y. Yano, T. Wajima, Y. Yamano and M. Takano. Pharmacokinetic/
pharmacodynamic modeling and simulation to determine effective dosage regimens for
doripenem. Journal of Pharmaceutical Sciences (2010) 99(5), 2483-91.

PK/PD Model

Katsube et al. assumed a two-compartment infusion model with linear elimination from
the central compartment to describe the pharmacokinetics of the doripenem. For the
bacterial growth model, they assumed that the total bacterial population is comprised of
drug-susceptible growing cells and drug-insensitive resting cells. The antibacterial effect
of the drug was included in the killing rate of the bacteria via a simple Emax type model:
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Kmazx * [Drug| = [Growing]
KC50 + [Drug]

KillingRate

where [Drug] is the concentration (ug/ml) of the drug in the central compartment, and
[Growing] is the count of the growing bacterial population in CFU/ml (CFU = Colony
Forming Units). Kmax is the maximal killing rate constant (1/hour) and KC50 is the
Michaelis-Menten rate constant (ug/ml).

A graphical view of the SimBiology implementation of the model is shown below.
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% Load model
sbioloadproject("AntibacterialPKPD.sbproj®, "ml®) ;
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Dosage Regimens
Katsube et al. simulated the model using four common antibiotic dosage strategies.

* 250 mg two times a day (b.1.d.)
* 250 mg three times a day (t.i.d.)
* 500 mg two times a day (b.i.d.)
* 500 mg three times a day (t.i.d.)

Infusion dosing was used in all four dosages regimens, and infusion time was set to 30
minutes. In SimBiology, these dosage regimens have been implemented as dose objects.

% Select dose objects in the model
doseNames = {"250 mg bid", "250 mg tid", "500 mg bid", "500 mg tid"};
for iDoseGrp = 1:length(doseNames)
doseRegimens(iDoseGrp) = sbioselect(ml, "Name®, doseNames{iDoseGrp}) ;
end

Description of the Virtual Population

A virtual population of individuals was generated based on the distribution of
demographic variables and PK/PD parameters. The type of distribution and the values of
the distribution parameters were based on data from earlier clinical trials of doripenem
conducted in Japan.

Note: In [1], 5,000 virtual patients were simulated in each dosage group. In this example,
we will use 1,000 patients in each group. To simulate a different population size, change
the value of nPatients below.

% Setup
nPatients = 1000 ; % Number of patients per dosage group
nDoseGrps =4 ; % Number of tested dosage regimens

Distribution of Demographic Variables:

Weight (WE) and age (Age) were sampled from a normal distribution with a mean of

51.6 kg and 71.8 years, respectively, and a standard deviation of 11.8 kg and 11.9 years,
respectively. 26% of the population was assumed to be female. Serum creatinine levels
(Scr) were sampled from a lognormal distribution with a typical value of 0.82 mg/dL, and
coefficient of variation (CV) of 32%. The creatinine clearance rates (CrCL) were calculated
using the Cockcroft-Gault equation.
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% Note: The inputs to the lognrnd function are the mean (mu) and standard
% deviation (sigma) of the associated normal distribution. Here and

% throughout the example, mu and sigma were calculated from the reported
% typical value and coefficient of the lognormal distriution. See the

% lognstat documentation for more information.

% Patient demographics

Wt = normrnd(51.6 , 11.8 , nPatients , nDoseGrps ) ; % units: kg
Age = normrnd(71.8 , 11.9 , nPatients , nDoseGrps ) ; % units: years
Scr = lognrnd(-0.2485 ,0.3197 , nPatients , nDoseGrps ) ; % units: ml/minute

% Gender ratio

id = 1l:nPatients*nDoseGrps

idFemale = randsample(id , round(0.26*nDoseGrps*nPatients)) % 26% Female
% Creatinine Clearance (using Cockcroft-Gault equation)
CrCL (140 - Age) -*Wt./(Scr*72)
CrCL(idFemale) CrCL(idFemale)*0.85

% units: ml/minute
% multiply by 0.85 for f

Distribution of Pharmacokinetic (PK) parameters:

PK parameters, Central, k12 and k21, were sampled from a lognormal distribution
with typical values of 7.64 liters, 1.59 1/hour and 2.26 1/hour, respectively, and a

20% coefficient of variation (CV). Central is the distribution volume of the central
compartment, and k12 and k21 are transfer rate constants between the Central and
the Peripheral compartments. The drug clearance rate, CL, was assumed to depend
linearly on the creatinine clearance rate via the following equation:

CL=107T+«CrCL +45.6 + =

where £ i1s the additive residual error sampled from a normal distribution with a mean of
0 ml/minute and standard deviation of 22 ml/minute.

% PK parameters

Central = lognrnd(2.01 , 0.2 , nPatients, nDoseGrps) ; % units: liter
k12 = lognrnd(0.4441 , 0.2 , nPatients, nDoseGrps) ; % units: 1/hour
k21 = lognrnd(0.7958 , 0.2 , nPatients, nDoseGrps) ; % units: 1/hour
CL = 1.07*CrCL + 45.6 + normrnd(0,22,nPatients,nDoseGrps) ; % units: ml/minute

Distribution of Pharmacodynamic (PD) parameters:

Growing-to-resting transformation rate constants, k1 and k2, were sampled from a
lognormal distribution with typical value of 5.59e-5 and 0.0297 1/hour, respectively, each
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with a CV of 20%. Kmax was sampled from a lognormal distribution with a typical value
of 3.5 1/hour and 15.9% CV. Katsube et al. assumed that values k1, k2 and Kmax were
independent of the bacterial strain being treated. The value of Beta, the net growth rate
constant, was fixed at 1.5 1/hour.

Based on experiments with several strains, the authors concluded that the value of KC50
was linearly dependent on the minimum inhibition concentration (MIC) of bacterial
strain via the following equation.

In{KCH)) = —1.91 + 0808 x In({MIC) + ¢

where £ is the additive residual error sampled from a normal distribution with a mean of
0 and standard deviation of 1.06 ug/ml. In the simulation, the MIC values were sampled
from a discrete distribution, and the KC50 value was calculated for the selected MIC
using the above equation.

% Discrete distribution of MIC values based on 71 P. aeruginosa strains

micValue = [0.0625, 0.125, 0.25, 0.5, 1,2 ,4 ,8, 16, 32 1] ;
micFreq = [ 5 , 8, 9 ,14 ,7,8,9,5,2 ,41:;
k1 = lognrnd(-9.8116, 0.2 , nPatients, nDoseGrps) ; % units: 1/hour
k2 = lognrnd(-3.5362, 0.2 , nPatients, nDoseGrps) ; % units: 1/hour
Kmax = lognrnd( 1.2332, 0.159, nPatients, nDoseGrps) ; % units: 1/hour

% Sample MIC values from a discrete distribution using randsample
MIC = nan(nPatients, nDoseGrps) ; % preallocate
for iDoseGrp = 1:nDoseGrps
MIC(:, iDoseGrp) = randsample(micValue , nPatients, true , micFreq);
end

KC50 = exp(-1.91 + 0.898*log(MIC) + 1.06*randn(nPatients , nDoseGrps)) ; % units:

Simulation Setup & Design

You will convert the model to a SimBiology exported model, which facilitates performing
parameter scans in parallel. When you export the model, you choose which species,
parameters, or compartments can be varied. In this example, you will vary 8 parameters,
Central, k12, k21, CL, k1, k2, Kmax, and KC50.

% Select the parameters you want to vary.
paramNames = {"Central®, "k12", “k21", *CL", "k1", "k2", "Kmax®", "KC50"};
for iParam = 1:length(paramNames)
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parameters(iParam) = sbioselect(ml, “Name®, paramNames{iParam});
end

% Created the exported model, using the selected parameters and doses
exportedModel = export(ml, parameters, doseRegimens);

% Accelerate the model
accelerate(exportedModel);

For all dosage scenarios, the model was simulated until t = 2 weeks from the time of the
first dose. Total bacterial count, CFU, was sampled every 24 hours (once a day) for the
entire duration of the dosage regimen.

tObs
nTPoints

0:24:336 ; % hour
length(tObs) ; % Number of sampling points

% Specify that the simulation should report these output times
exportedModel .SimulationOptions.OutputTimes = tObs;

Start the Worker Pool

If you have the Parallel Computing Toolbox software, you can use local workers to
distribute each simulation to a different worker. If you also have the MATLAB®
Distributed Computing Server™, you can run your simulations on a cluster.

You can create a pool of workers using the current cluster profile with this command:
parpool
Monte Carlo Simulation of Patients with Severe Infection

The antibacterial efficacy of a drug can be measured using different PK/PD indices.
Katsube et al. set the criterion for bacterial elimination at logl0(CFU) < O, where
CFU is the total bacterial count. The efficacy of each dose regimen was measured as the
fraction of the population that achieved the success criteria in the dosage group. This
efficacy metric, Pr{log10(CFU) < 0}, was tracked as a function of time for each dosage
group.

In their simulation studies, the authors investigated the efficacy of the dosage regimens
on two classes of patients:

*  Moderate infection (Initial bacterial count = 1e4 CFU/ml)

+ Severe infection (Initial bacterial count = 1e7 CFU/mI)
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In this example, we will replicate the results for the severe infection case only. Note that
you can easily simulate the other scenario, patients with moderate infection, by changing
the initial amount of bacterial count in the model to 1e4 CFU/ml.

% Preallocate
10g10CFU = cell(1,nDoseGrps) ;

for

iDoseGrp = 1:nDoseGrps

% Select the exported doess
currentDose = getdose(exportedModel, doseNames{iDoseGrp});

cfu = nan(nTPoints , nPatients) ; % preallocate

disp(["Simulating group °, num2str(iDoseGrp), ° -.. "D
parfor iPatient = l1:nPatients

% Use parameter values for current patient
% Define the parameters in the same order used when exporting
parameterValues = [

Central (iPatient , iDoseGrp)

k12(iPatient, iDoseGrp)

k21(iPatient, iDoseGrp)

CL(iPatient , 1DoseGrp)

ki(iPatient , iDoseGrp)

k2(iPatient , iDoseGrp)

Kmax(iPatient, iDoseGrp)

KC50(iPatient, iDoseGrp)

1:

% Simulate
simData = simulate(exportedModel, parameterValues, currentDose) ;

% Extract bacterial count data for Growing and Resting population
[~, bactCount] = selectbyname(simbata, {"Growing®, "Resting"}) ;

% Sum of growing and resting bacterial
cfu(:, iPatient) = sum(bactCount, 2) ;

end

% Calculate 1ogl10(CFU)
1og10CFU{iDoseGrp} = logl0(cfu) ;
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end

% Save results

1og10CFU_250bid
log10CFU_250tid
1og10CFU_500bid
log10CFU_500tid

1og10CFU{1} ;
1og10CFU{2} ;
10g10CFU{3} ;
1og10CFU{4} ;

Simulating group 1 ...
Simulating group 2 ...
Simulating group 3 ...
Simulating group 4 ...

Clean Up the Worker Pool

If you previously called parpool to start some workers, be sure to close them using the
following command.:

delete(gcp)

The function gcp (get current pool) returns the pool created by parpool, and the delete
command closes the pool.

Time Course Profiles of Bacterial Counts

We plot the median (in red) and percentile (shaded) profiles of the 10g10(CFU) levels for
all four dosage regimens. Observe that in all four groups, the median time course profile
shows that bacterial eradication is complete before the end of the treatment period (336
hours). However, it is evident from the higher percentile profiles that the treatments

are not successful for all patients. The 95th and 90th percentile profiles also indicate
that dosing a lower amount with a higher frequency (250 tid) is more effective than less
frequent dosing with higher amount (500 bid).

hax1(1) = subplot(2,2,1)
plotCFUCount(tObs, loglOCFU_250bid, "a. Dose 250 bid~
hax1(2) = subplot(2,2,2)
plotCFUCount(tObs, loglOCFU_250tid, "b. Dose 250 tid~
hax1(3) = subplot(2,2,3)
plotCFUCount(tObs, loglOCFU_500bid, "c. Dose 500 bid~
hax1(4) = subplot(2,2,4)
plotCFUCount(tObs, loglOCFU_500tid, "d. Dose 500 tid-

Vv v v\
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% Link subplot axes
linkaxes(hax1)
haxl =
Axes with properties:
XLim: [0 1]
YLim: [0 1]
XScale: “linear”
YScale: "linear”
GridLineStyle: *-*
Position: [0.1300 0.5838 0.3347 0.3412]

Units: "normalized”

Use GET to show all properties

haxl =
1x2 Axes array:

Axes Axes

haxl =
1x3 Axes array:

Axes Axes Axes

haxl =
1x4 Axes array:

Axes Axes Axes Axes
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Effect of Renal Function on Antibacterial Activity

Finally, the authors compared the efficacy profiles of the dosages regimens as a function
of the renal function. They classified the patients into four renal function groups based
on the creatinine clearance rates (CrCL):

*  Creatinine Clearance Group 1: CrCL < 30

*  Creatinine Clearance Group 2: 30 <= CrCL <50

*  Creatinine Clearance Group 3: 50 <= CrCL < 70

* Creatinine Clearance Group 4: CrCL >= 70

The next figure shows the effect of renal function (creatinine clearance rate) on the
antibacterial efficacy of the four dosage regimens. Observe that in the normal renal

4-68



PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics

function group (CrCL >= 70), the efficacy profiles of the four treatment strategies are
significantly different from each other. In this case, the 500 mg t.i.d. dose is much more
effective than the other regimens. In contrast, simulations involving patients with renal
dysfunction (CrCL < 30 and 30 <= CrCL < 50), we don't see much difference between the
treatment groups. This indicates that for patients with a renal dysfunction, a less intense
or less frequent dosing strategy would work almost as well as a dosing strategy with
higher frequency or dosing amount.

% Preallocate
idCrCLGrp = false(nPatients, nDoseGrps) ;

% Line Style
Is = {"bd:-", "b*:", "rd:z", "r*:"} ;

titleStr = {"CL_c_r < 30° ,
"30 <= CL_c r < 50° ,
"50 <= CL_c r < 70" y -e-
"CLcr > 70" 3}
f = fiqgure;

f.Color = "w
for ICrCLGrp = 1:4 % Creatinine Clearance Groups
hax2(iCrCLGrp) = subplot(2,2, iCrCLGrp) ;
title( titleStr{iCrCLGrp} ) ;
ylabel ("Prob(logl0CFU < 0)" ) ;
xlabel ("Time (hours)* )

end

% Set axes properties

set(hax2, "XTick* , 0:48:336 ,
"XTickLabel " , 0:48:336 ,
*Ylim*® , [0 1] »
*Xlim*® , [0 336] ,
"NextPlot” , ~add-® ,
"Box* , "on* );

% Plot results by renal function group:
for iDoseGrp = 1:nDoseGrps

% Extract indices for renal function
1dCrCLGrp(:, 1) = CrCL(:,iDoseCGrp) < 30
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1dCrCLGrp(:, 2)
1dCrCLGrp(:, 3)
1dCrCLGrp(:, 4)

CrCL(:,1DoseGrp) >= 30 & CrCL(:,iDoseGrp) < 50
CrCL(:,1DoseGrp) >= 50 & CrCL(:,iDoseGrp) < 70
CrCL(:,iDoseGrp) >= 70

for iICrCLGrp = 1:4 % Creatinine Clearance Groups

% Calculate probability
Pr = sum( ( loglOCFU{iDoseGrp}(:, EdCrCLGrp(:, ICrCLGrp)") < 0) , 2 )/sum(idCr(

% Plot

plot(hax2(iCrCLGrp), tObs, Pr , Is{iDoseGrp}, "MarkerSize®, 7)
end

end

legend(hax2(4), {"250 b.i.d.", "250 t.i.d.", "500 b.i.d.", "500 t.i.d."} )
legend location NorthWest
legend boxoff

linkaxes(hax2)

Figure (2) with properties:

Number: 2
Name: **
Color: [1 1 1]
Position: [360 502 560 420]
Units: "pixels”

Use GET to show all properties
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This example shows how to deploy a graphical application that simulates a SimBiology
model. The example model is the Lotka-Volterra reaction system as described by
Gillespie [1], which can be interpreted as a simple predator-prey model.

This example requires MATLAB Compiler™
Overview

You can create stand-alone SimBiology applications using the MATLAB Compiler and
the SimBiology exported model. To make your application compatible with the MATLAB
Compiler, do the following:

* Create an exported model, using the model's export method.

+ Accelerate the model (optional).

+ Save the model to a MAT file.

*  Ensure your application loads the model from the MAT file.

+ Add the %#function pragma to the application's top-level function.

+ (Call the mcc function, explicitly adding the MAT file and the exported model's
dependent files to the application.

Load the Model
sbioloadproject lotka ml
Create the Exported Model
exportedModel = export(ml);

Accelerate the Model

Acceleration requires a correctly configured MEX compiler (see the documentation for
mex -setup).

accelerate(exportedModel) ;
Save the Exported Model
Uncomment the next line to save the model in exportedLotka.mat

% save exportedLotka exportedModel
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Call mcc

The top-level function for the application, simulateLotkaGUI .m, has already been
updated to use the exported model MAT file. It also contains the following %#function
pragma, which tells the MATLAB Compiler that the application uses a SimBiology
exported model: %#Function SimBiology.export_Model

Now, determine the list of files to explicitly add to the application. This list includes the
MAT file containing the exported model and any files listed in the DependentFiles
property of the exported model. Note that this MAT file must be loaded into the
workspace before mcc is called, so that the exported model's files are available for
deployment.

% To speed up compilation, we use the option |-N -p simbio], which informs

% [mcc| that the deployed application does not depend on any additional

% toolboxes. For the purposes of this example, we programmatically

% construct the |mcc| command.

mccCommand = ["mcc -m simulateLotkaGUl.m -N -p simbio -a exportedLotka.mat *
sprintf(" -a %s", exportedModel .DependentFiles{:})];

% Uncomment the following line to execute the |mcc| command. This may take
% several minutes.

%

% eval (mccCommand)

References

[1] Gillespie D.T. "Exact Stochatic Simulation of Coupled Chemical Reactions," (1977)
The Journal of Physical Chemistry, 81(25), 2340-2361.
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In this example, you will use the parameter estimation capabilities of SimBiology™, to
calculate F, the bioavailability, of the drug ondansetron. You will calculate F by fitting
a model of absorption and excretion of the drug to experimental data tracking drug
concentration over time.

Background

Most drugs must be absorbed into the bloodstream in order to become active. An
intravenous (IV) administration of a drug is one way to achieve this. However, it is
impractical or impossible in many cases.

When a drug is not given by IV, it follows some other route into the bloodstream, such as
absorption through the mucous membranes of the GI tract or mouth. Drugs administered
through a route other than IV administration are generally not completely absorbed.
Some portion of the drug is directly eliminated and never reaches the bloodstream.

The percentage of drug absorbed is the bioavailability of the drug. Bioavailability is

one of the most important pharmacokinetic properties of a drug. It is useful when
calculating safe dosages for non-IV routes of administration. Bioavailability is calculated
relative to an IV administration. When administered intravenously, a drug has 100%
bioavailability. Other routes of administration tend to reduce the amoutn of drug that
reaches the blood stream.

Modeling Bioavailability

Bioavailability can be modeled using one of several approaches. In this example, you use
a model with a GI compartment and a blood plasma compartment. Oral administration is
modeled by a dose event in the GI compartment. IV adminsitration is modeled by a dose
event in the blood plasma compartment.

The example models the drug leaving the GI compartment in two ways. The available
fraction of the drug is absorbed into the bloodstream. The remainder is directly
eliminated. The total rate of elimination, ka, is divided into absorption, ka_Central,
and direct elimination, Cl_Oral. The bioavailability, F, connects total elimination with
ka_Central and Cl_Oral via two initial assighment rules.

ka Central = F*ka
Cl_Oral = (1-F)*ka

The drug is eliminated from the Blood_Plasma compartment through first-order
kinetics, at a rate determined by the parameter Cl_Central.
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Load the project that contains the model m1.
sbioloadproject("Bioavailability.sbproj”,"ml")
Format of the Data for Estimating Bioavailability

You can estimate bioavailability by comparing intrapatient measurements of drug
concentration under different dosing conditions. For instance, a patient receives an IV
dose on day 1, then receives an oral dose on day 2. On both days, we can measure the
blood plasma concentration of the drug over some period of time.

Such data allow us to estimate the bioavailability, as well as other parameters of the
model. Intrapatient time courses were generated for the drug ondansetron, reported in
[3] and reproduced in [1].

Load the data, which is a table.
load ondansetron_data

Convert the data to a groupedData object because the fitting function sbiofit requires
it to be a groupedData object.
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gd = groupedData(ondansetron_data);

Display the data.

gd
gd =
Time Drug Group
0 NaN 1
0.024358 69.636 1
0.087639 58.744 1
0.15834 49.824 1
0.38895 44 .409 1
0.78392 40.022 1
1.3182 34.522 1
1.8518 28.972 1
2.4335 25.97 1
2.9215 22.898 1
3.41 20.75 1
3.8744 18.095 1
4.9668 13.839 1
5.8962 10.876 1
7.8717 6.6821 1
10.01 4.0166 1
12.08 2.5226 1
15.284 0.97816 1
0 NaN 2
0.54951 5.3091 2
0.82649 14.262 2
1.0433 19.72 2
1.4423 21.654 2
2.0267 22.144 2
2.5148 19.739 2
2.9326 17.308 2
3.3743 15.599 2
3.9559 13.906 2
4.9309 10.346 2
6.1155 7.4489 2
8.0002 5.1919 2
10.091 2.9058 2
12.228 1.6808 2

v

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

Oral

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
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The data have variables for time, drug concentration, grouping information, IV, and oral
dose amounts. Group 1 contains the data for the IV time course. Group 2 contains the
data for the oral time course. NaN in the Drug column means no measurement was made
at that time. NaN in one of the dosing columns means no dose was given through that
route at that time.

Plot the pharmacokinetic profiles of the oral dose and IV administration.

plot(gd.Time(gd.Group==1),gd.Drug(gd.Group==1), "Marker"®,"+")
hold on

plot(gd.Time(gd.-Group==2),gd.Drug(gd.Group==2), "Marker"®, "x")
legend({"8 mg 1V","8 mg Oral"})

xlabel ("Time (hour)®)

ylabel ("Concentration (milligram/liter)")
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Notice there is a lag phase in the oral dose of about an hour while the drug is absorbed
from the GI tract into the bloodstream.

Fitting the Data

Estimate the following four parameters of the model:

Total forward rate out of the dose compartment, ka
Clearance from the Blood_Plasma compartment, clearance
Volume of the Blood_Plasma compartment

Bioavailability of the orally administered drug, F
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Set the initial values of these parameters and specify the log transform for all
parameters using an estimatedlnfo object.

init =[112 .8];
estimated_parameters = estimatedInfo({"log(ka)", "log(clearance)”, ...
"log(Blood_Plasma) ", "logit(F) "}, "Initialvalue®,init);

Because ka, clearance, and Blood_Plasma are positive physical quantities, log
transforming reflects the underlying physical constraint and generally improves fitting.
This example uses a logit transform on F because it is a quantity constrained between 0
and 1. The logit transform takes the interval of 0 to 1 and transforms it by taking the log-
odds of F (treating F as a probability). For a few drugs, like theophyline, constraining F
between 0 and 1 is inappropriate because oral bioavailability can be greater than 1 for
drugs with unusual absorption or metabolism mechanisms.

Next, map the response data to the corresponding model component. In the model, the
plasma drug concentration is represented by Blood_Plasma.Drug_Central. The
corresponding concentration data is the Drug variable of the groupedData object gd.

responseMap = {"Blood_Plasma.Drug_Central = Drug"};

Create the dose objects required by sbiofit to handle the dosing information. First,
create the IV dose targeting Drug_Central and the oral dose targeting Dose_Central.

iv_dose
oral_dose

sbiodose("1V*", "TargetName”, "Drug_Central *);
sbiodose("Oral ", "TargetName®, "Drug_Oral™);

Use these dose objects as template doses to generate an array of dose objects from the
dosing data variables 1V and Oral.

doses_for_fit = createDoses(gd,{"1V","Oral"},"",[iv_dose, oral_dose]);

Estimate parameters using sbiofit.

opts = optimoptions("lIsgnonlin®, "Display”, "final™);

results = shiofit(ml, gd,responseMap,estimated_parameters,doses_for_fit, ...
“Isgnonlin®,opts,[], "pooled”,true);

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.
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Interpreting Results

First, check if the fit is successful.

plot(results)
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Overall, the results seem to be a good fit. However, they do not capture a distribution
phase over the first hour. It might be possible to improve the fit by adding another
compartment, but more data would be required to justify such an increase in model
complexity.
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When satisfied with the model fit, you can draw conclusions about the estimated
parameters. Display the parameters stored in the results object.

results.ParameterEstimates

ans =
Name Estimate StandardError
"ka* 0.74025 0.16777
"clearance” 45.442 2.8902
"Blood Plasma* 138.63 4.5328
FT 0.6626 0.068487

The parameter F is the bioavailability. The result indicates that ondansetron has
approximately a 66% bioavailability. This estimate in line with the literature reports
that oral administration of ondansetron in the 2-24 milligram range has a 60%
bioavailability [1,3].

Blood_Plasma is the volume of distribution. This result is reasonably close to the 160
liter Vd reported for ondansetron [1]. The estimated clearance is 45.4 L/hr.

ka does not map directly onto a widely reported pharmacokinetic parameter. Consider

it from two perspectives. We can say that 66% of the drug is available, and that the
available drug has an absorption parameter of 0.4905/hr. Or, we can say that drug
clearance from the GI compartment is 0.7402/hr, and 66% of the drug cleared from the GI
tract is absorbed into the bloodstream.

Generalizing This Approach

Isgnonlin, as well as several other optimization algorithms supported by sbioFfit, are
local algorithms. Local algorithms are subject to the possibility of finding a result that

1s not the best result over all possible parameter choices. Because local algorithms do
not guarantee convergence to the globally best fit, when fitting PK models, restarting
the fit with different initial conditions multiple times is a good practice. Alternatively,
sbiofit supports several global methods, such as particle swarm, or genetic algorithm
optimization. Verifying that a fit is of sufficient quality is an important step before
drawing inferences from the values of the parameters.

This example uses data that was the mean time course of several patients. When fitting
a model with data from more patients, some parameters might be the same between
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patients, some not. Such requirements introduce the need for hierarchical modeling. You
can perform hierarchical modeling can by configuring the CategoryVariableName flag
of EstimatedInfo object.

References
1 Roila, Fausto, and Albano Del Favero. "Ondansetron clinical pharmacokinetics.”

Clinical Pharmacokinetics 29.2 (1995): 95-109.

2 Colthup, P. V., and J. L. Palmer. "The determination in plasma and
pharmacokinetics of ondansetron." European Journal of Cancer & Clinical Oncology
25 (1988): S71-4.
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Create Reaction Rates

* “Define Reaction Rates with Mass Action Kinetics” on page A-3

*  “Define Reaction Rates with Enzyme Kinetics” on page A-9
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Define Reaction Rates with Mass Action Kinetics

Definition of Mass Action Kinetics

Mass action describes the behavior of reactants and products in an elementary chemical
reaction. Mass action kinetics describes this behavior as an equation where the velocity
or rate of a chemical reaction is directly proportional to the concentration of the
reactants.

Zero-Order Reactions

With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

reaction: null -> P
reaction rate: k mole/second
species: P 0 mole
parameters: k 1 mole/second

Note: When specifying a nul I species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following
result:
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Zero-Order Mass Action Kinetics

Note: If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

First-Order Reactions

With a first-order reaction, the reaction rate is proportional to the concentration of a
single reactant. An example of a first-order reaction is radioactive decay.

reaction: R -> P
reaction rate: k*R mole/(liter*second)
species: R = 10 mole/liter
P = 0 mole/liter
parameters: k = 1 1/second

Entering the reaction above into the software and simulating produces the following
results:
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First-Order Mass Action Kinetics

Second-Order Reactions

A second-order reaction has a reaction rate that is proportional to the square or the
concentration of a single reactant or proportional to two reactants. Notice the space
between the reactant coefficient and the name of the reactant. Without the space, 2R
would be considered the name of a species.

reaction: 2 R -> P
reaction rate: k*R™"2 mole/(liter*second)
species: R 10 mole/liter
P 0 mole/liter
parameters: k 1 liter/(mole*second)

Entering the reaction above into the software and simulating produces the following
results:
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Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two of the
reactants.

reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)
species: R1 10 mole/liter
R2 8 mole/liter
P 0 mole/liter
parameters: K 1 liter/(mole*second)

Enter the reaction above into the software and simulating produces the following results.
There is a difference in the final values because the initial amount of one of the reactants
1s lower than the other. After the first reactant is used up, the reaction stops.
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Second-Order Kinetics with Two Reactants

Reversible Mass Action

You can model reversible reactions with two separate reactions or with one reaction.
With a single reversible reaction, the reaction rates for the forward and reverse reactions
are combined into one expression. Notice the angle brackets before and after the hyphen
to represent a reversible reaction.

reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)
species: = 10 mole/liter
= 0 mole/liter
1 1/second
0.

R

P
parameters: kf

k 2 1/second

r =
Entering the reaction above into the software and simulating produces the following
results. At equilibrium when the rate of the forward reaction equals the reverse reaction,
v = kf*R - kr*P = 0 and P/R = kf/kr.
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Define Reaction Rates with Enzyme Kinetics

Simple Model for Single Substrate Catalyzed Reactions

A simple model for enzyme-catalyzed reactions starts a substrate S reversibly binding
with an enzyme E. Some of the substrate in the substrate/enzyme complex is converted to
product P with the release of the enzyme.

k1
S+ET_ESL>E+P
r

vl=ki[SI[E], vir=kir[ES], v2=Lk2[ES]

This simple model can be defined with

+ Differential rate equations. See “Enzyme Reactions with Differential Rate Equations”
on page A-9.

*  Reactions with mass action kinetics. See “Enzyme Reactions with Mass Action
Kinetics” on page A-11.

* Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions with
Irreversible Henri-Michaelis-Menten Kinetics” on page A-12.

Enzyme Reactions with Differential Rate Equations

The reactions for a single-substrate enzyme reaction mechanism (see “Simple Model

for Single Substrate Catalyzed Reactions” on page A-9) can be described with

differential rate equations. You can enter the differential rate equations into the software
as rate rules.

reactions: none
reaction rate: none

rate rules: dS/dt K1r*ES - k1*S*E

dE/dt = KI1r*ES + k2*ES - k1*S*E
dES/dt = k1*S*E - k1r*ES - k2*ES
dP/dt = k2*ES

species: S = 8 mole
E= 4 mole
ES = 0 mole
P=0 mole
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parameters: Kkl
kir
k2

2 1/(mole*second)
1 1/second
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Remember that the rate rule dS/dt = F(X) is written in a SimBiology rate rule
expression as S = F(X). For more information about rate rules see “Rate Rules” on page
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Alternatively, you could remove the rate rule for ES, add a new species Etotal for the
total amount of enzyme, and add an algebraic rule 0 = Etotal - E - ES, where the
initial amounts for Etotal and E are equal.

reactions: none
reaction rate: none

rate rules: dS/dt K1r*ES - k1*S*E

dE/dt = Kk1r*ES + k2*ES - k1*S*E
dP/dt = k2*ES
algebraic rule: 0 = Etotal - E - ES
species: S = 8 mole
E= 4 mole
ES = 0 mole
P=0 mole
Etotal = 4 mole
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parameters: k1l
kir
k2

2 1/(mole*second)
1 1/second
1.5 1/second

Enzyme Reactions with Mass Action Kinetics

Determining the differential rate equations for the reactions in a model is a time-
consuming process. A better way is to enter the reactions for a single substrate enzyme
reaction mechanism directly into the software. The following example using models an
enzyme catalyzed reaction with mass action kinetics. For a description of the reaction
model, see “Simple Model for Single Substrate Catalyzed Reactions” on page A-9.

reaction: S + E -> ES
reaction rate: k1*S*E (binding)

reaction: ES -> S + E
reaction rate: ki1r*ES (unbinding)

reaction: ES -> E + P
reaction rate: k2*ES (transformation)

species: S = 8 mole
E= 4 mole
ES = 0 mole
P=0 mole
parameters: k1 = 2 1/ (mole*second)
kir = 1 1/second
k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from using
differential rate equations.
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Enzyme Reactions with Irreversible Henri-Michaelis-Menten Kinetics

Representing an enzyme-catalyzed reaction with mass action kinetics requires you

to know the rate constants k1, k1r, and k2. However, these rate constants are rarely
reported in the literature. It is more common to give the rate constants for Henri-
Michaelis-Menten kinetics with the maximum velocity Vm=k2*E and the constant Km =
(k1lr + k2)/K1. The reaction rate for a single substrate enzyme reaction using Henri-
Michaelis-Menten kinetics is given below. For information about the model, see “Simple
Model for Single Substrate Catalyzed Reactions” on page A-9.

v Vmax[S]
Km +[S]

The following example models an enzyme catalyzed reaction using Henri-Michaelis-
Menten kinetics with a single reaction and reaction rate equation. Enter the reaction
defined below into the software and simulate.

reaction: S -> P
reaction rate: Vmax*S/(Km + S)
species: S= 8 mole
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P= 0 mole
parameters: Vmax = 6 mole/second
Km = 1.25 mole

The results show a plot slightly different from the plot using mass action kinetics. The
differences are due to assumptions made when deriving the Michaelis-Menten rate
equation.

RE=TEY

File Edt Wiew Insert Tools Deskiop Window Help ¥

10

«—P

reaction: S-> P
rate equation: v = Vmax"S/(Km + S)

Species Amounts
I

_2 1 1 1
0 2 4 & 8 10

Time (seconds)

A-13






Create Rate Rules




B Create Rate Rules

Create Rate Rules

+ “Create a Rate Rule for a Constant Rate of Change” on page B-3
* “Create a Rate Rule for an Exponential Rate of Change” on page B-6
+ “Create a Rate Rule to Define a Differential Rate Equation” on page B-8

* “Create a Rate Rule for the Rate of Change That Is Determined by Another Species”
on page B-9



Create a Rate Rule for a Constant Rate of Change

Create a Rate Rule for a Constant Rate of Change

This example shows how to increase the amount or concentration of a species by a
constant value using the zero-order rate rule. For example, suppose species X increases
by a constant rate K. The rate of change is:

dafdt =k

Set the initial amount of species X to 2, and the value of parameter k to 1. Use the
following commands to set up a SimBiology model accordingly and simulate it.

sbiomodel ("m");

addcompartment(m, "comp®);
addspecies(m, “x", "InitialAmount®,2);
addparameter(m, "k","Value®",1);
addrule(m, "x = k","RulleType”, "rate”);
[t,sd,species] = sbiosimulate(m);
plot(t,sd);

legend(species)

xlabel("Time");

ylabel ("Species Amount®);

=T wnoO3
I
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Alternatively, you could model a constant increase in a species using the Mass Action
reaction null -> x with the forward rate constant k.

clear

m = sbiomodel("m");

c = addcompartment(m, "comp”);

s = addspecies(m, "x", " InitialAmount”,2);
r = addreaction(m, "null -> x%);

kl = addkineticlaw(r, "MassAction®);
p addparameter(kl, k", "Value®,1);
kl .ParameterVariableNames = "k";
[t,sd,species] = sbiosimulate(m);
plot(t,sd);

legend(species)
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Species Amount

xlabel ("Time");
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B Create a Rate Rule for an Exponential Rate of Change

Create a Rate Rule for an Exponential Rate of Change

B-6

This example shows how to change the amount of a species similar to a first-order
reaction using the first-order rate rule. For example, suppose the species X decays
exponentially. The rate of change of species X is:

/i ksx
The analytical solution is:
C, = Cy e *t

where C' is the amount of species at time t, and €0 is the initial amount. Use the
following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel("m");

c = addcompartment(m, “comp®);

s = addspecies(m, "x","InitialAmount”,2);

p = addparameter(m, “k","Value®,1);

r = addrule(m,"x = -k * x","RuleType”, "rate”);
[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species);

xlabel ("Time");

ylabel ("Species Amount®);
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Create a Rate Rule for an Exponential Rate of Change

If the amount of a species X is determined by a rate rule and X is also in a reaction,
reaction a -> X and a rate rule df

X must have its BoundaryCondition property set to true. For example, with a

such as Invalid

10

* 1 set the BoundaryCondition property of

species X to true so that a differential rate term is not created from the reaction. The

rule variable "x*

amount of X is determined solely by a differential rate term from the rate rule. If the
BoundaryCondition property is set to False, you will get the following error message

in rate rule or reaction
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Create a Rate Rule to Define a Differential Rate Equation

Many mathematical models in the literature are described with differential rate
equations for the species. You could manually convert the equations to reactions, or
you could enter the equations as rate rules. For example, you could enter the following
differential rate equation for a species C:

dC

— =vi-vdX -kdaC
dt

Ke +

as a rate rule in SimBiology: C = vi - (vd*X*C)/(Kc + C) - kd*C
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Create a Rate Rule for the Rate of Change That Is Determined by
Another Species

This example shows how to create a rate rule where a species from one reaction can
determine the rate of another reaction if it is in the second reaction rate equation.
Similarly, a species from a reaction can determine the rate of another species if it is in
the rate rule that defines that other species. Suppose you have a SimBiology model with
three species (a, b, and c), one reaction (a -> b), and two parameters (k1 and k2). The

rate equation is defined as # = — k1 # @ and rate rule is de/dt = k2 + @ The solution for
the species in the reaction are:

a =a,e k", b =a,(l—e k;:}‘

Since the rate rule @c/dt = k2 + a jg dependent on the reaction, defdt = ka(a,e™™") The
solution is:

c= s+ kaa, k1l — e 1-_1}

Enter the following commands to set up a SimBiology model accordingly and simulate it.

m sbiomodel ("m*);

c addcompartment(m, "comp®);

sl addspecies(m, "a", "InitialAmount”,10, " InitialAmountUnits®, "mole™);
s2 addspecies(m, "b", " InitialAmount”,0, " InitialAmountUnits”,"mole®);
s3 addspecies(m, "c”, " InitialAmount”,5, " InitialAmountUnits”®,"mole®);
rxn = addreaction(m,"a -> b");

kil addkineticlaw(rxn, "MassAction®");

pl addparameter(kl,"k1","Value®,1, "ValueUnits®","1/second”);

rule = addrule(m,"c = k2 * a", RuleType”, "rate”);

kl .ParameterVariableNames = "kl1°";

p2 = addparameter(m,“k2","Value®,1, "ValueUnits®","1/second”);
[t,sd,species] = sbiosimulate(m);

plot(t,sd);

legend(species);

xlabel ("Time");

ylabel ("Species Amount®);
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C Minimal Cascade Model for a Mitotic Oscillator

Minimal Cascade Model for a Mitotic Oscillator

C-2

Albert Goldbeter modified a model with enzyme cascades [Goldbeter and Koshland 1981]
to fit cell cycle data from studies with embryonic cells [Goldbeter 1991]. He used this
model to demonstrate thresholds with enzyme cascades and periodic behavior caused by
negative feedback.

There are two SimBiology model variations using Goldbeter's model. The first model uses
the differential rate equations directly from Goldbeter's paper. The second model is built
with reactions using Henri-Michaelis-Menten kinetics.

In this section...
“Goldbeter Model” on page C-2
“SimBiology Model with Rate Rules” on page C-5

“SimBiology Model with Reactions” on page C-6

“References” on page C-16

Goldbeter Model

+ “About the Goldbeter Model” on page C-2
+ “Reaction Descriptions and Model Assumptions” on page C-3
+ “Mathematical Model” on page C-4

About the Goldbeter Model

Albert Goldbeter created a simple cell division model from studies with embryonic
cells [Goldbeter 1991]. This model demonstrates thresholds with enzyme cascades and
periodic behavior caused by negative feedback.

There are six species in Goldbeter's minimal mitotic oscillator model [Goldbeter 1991].

*  C — Cyeclin. The periodic behavior of cyclin activates and deactivates an enzyme
cascade.

* M+, M — Inactive (phosphorylated) and active forms of cde2 kinase. Kinases catalyze
the addition of phosphate groups onto amino acid residues.

X+, X — Inactive and active (phosphorylated) forms of a cyclin protease. Proteases
degrade proteins by breaking peptide bonds.

The reactions are labeled rl to r7 on the following diagram.
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This model shows:

*  How thresholds with cdc2 kinase activation (M+ -> M) and protease activation (X+ -
> X) can occur as the result of covalent modification (for example, phosphorylation or
dephosphorylation), but without the need for positive feedback.

*  How periodic behavior with cde2 kinase activation can occur with negative feedback
and the time delay associated with activation/deactivation enzyme cascades.

Reaction Descriptions and Model Assumptions

The following list describes each of the reactions in Goldbeter's minimal mitotic oscillator
with some of the simplifying assumptions. For a more detailed explanation of the model,
see [Goldbeter 1991].

*  Cyclin (C) is synthesized at a constant rate (r1) and degraded at a constant rate (r2).
*  Cyclin (C) does not complex with cdc2 kinase (M).

+  Cyclin (C) activates cdc2 kinase (M+ -> M) by increasing the velocity of the
phosphatase that activates the kinase. Inactive cdc2 kinase (M+) is activated by
removing inhibiting phosphate groups (r4).

* The amount of deactivating kinase (not modeled) for the cdc2 kinase (M) is constant.
Active cdc2 kinase (M) is deactivated by adding inhibiting phosphate group (r5).

* The activation of cyclin protease (X+ -> X) by the active cdc2 kinase (M) is direct
without other intervening cascades. Cyclin protease (X) is activated by adding
phosphate groups (r6).

C-3
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C+4

* The amount of deactivating phosphatase (not modeled) for the cyclin protease (X)
is constant. Active cyclin protease (X) is deactivated by removing the activating
phosphate groups (r7).

* The three species of interest are cyclin (C), active dephosphorylated cdc2 kinase (M),
and active phosphorylated protease (X). The total amounts of (M + M+) and (X + X+)
are constant.

Mathematical Model

Goldbeter's minimal mitotic oscillator model is defined with three differential rate
equations and two algebraic equations that define changing parameters in the rate
equations.

Differential Rate Equation 1, Cyclin (C)

The following differential rate equation is from [Goldbeter 1991] for cyclin (C).

dc
dt

=0; -y —kqC

K d +C
Differential Rate Equation 2, Kinase (M)

The following differential rate equation is for cdc2 kinase (M). Notice that (1 - M) is the
amount of inactive (phosphorylated) cdc2 kinase (M+).

a . a-M) . M

dt 'K +(-M) (K,+M
VM;[C]

V=t

17K, +[C]

Differential Rate Equation 3, Protease (X)

Differential rate equations for cyclin protease (X). Notice that (1 - X) is the amount of
inactive (unphosphorylated) cyclin protease (X+).

dX 1-X) X

=V -Vi

dt K;+(1-X) K,+X

Vy = VMo M]
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SimBiology Model with Rate Rules

+  “SimBiology Model with Rules” on page C-5
+  “SimBiology Simulation with Rules” on page C-6

SimBiology Model with Rules

In the literature, many biological models are defined using differential rate and algebraic
equations. With SimBiology software, you can enter the equations directly as SBML
rules. The example in this section uses Goldbeter's mitotic oscillator to illustrate this
point.

Writing differential rate equations in an unambiguous format that a software program
can understand is a fairly simple process.

* Use an asterisk to indicate multiplication. For example, k[a] is written k*a.

*  Remove square brackets that indicate concentration from around species. The units
associated with the species will indicate concentration (moles/liter) or amount
(moles, molecules).

SimBiology software uses square brackets around species and parameter name to
allow names that are not valid MATLAB variable names. For example, you could
have a species named glucose-6-phosphate dehydrogenase but you need to add
brackets around the name in reaction rate and rule equations.

+ Use parentheses to clarify the order of evaluation for mathematical operations. For
example, do not write a Henri-Michaelis-Menten rate as Vm*C/Kd + C, because Vm*C
is divided by Kd before adding C, and then C is added to the result.

The following equation is the rate rule for “Differential Rate Equation 1, Cyclin (C)” on
page C-4:

dc/dt = vi - (vd*X*C)/(Kd + C) - kd*C

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 2, Kinase (M)” on page C-4:

dw/dt = (Vi*Mplus)/(K1 + Mplus) - (V2*M)/(K2 + M)

V1 = (VM1*C)/(Kc + C)

Mplus = Mt - M

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 3, Protease (X)” on page C-4:
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C-6

dx/dt = (v3*Xplus)/(K3 + Xplus) - (V4*X)/(K4 + X)
V3 = VM3*M
Xplus = Xt - X

Rules

The active (M) and inactive (Mplus) forms of the kinase are assumed to be part of

a conserved cycle with the total concentration (Mt) remaining constant during the
simulation. You need only one differential rate equation with a mass balance equation to
define the amounts of both species. Similarly, the active (X) and inactive (Xplus) forms of
the protease are part of a second conserved cycle.

SimBiology Simulation with Rules

This is a simulation of Goldbeter's minimal mitotic oscillator using differential rate and
algebraic equations. Simulate with the sundials solver and plot species C, M, and X. For
a description of the model, see “SimBiology Model with Rules” on page C-5.
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SimBiology Model with Reactions

+  “Converting Differential Rate Equations to Reactions” on page C-7

+  “Calculating Initial Values for Reactions” on page C-9
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+ “SimBiology Simulation with Reactions” on page C-15
Converting Differential Rate Equations to Reactions

In the literature, many models are defined with differential rate equations. With
SimBiology software, creating the differential equations from reactions is unnecessary;
you can enter the reactions and let the software calculate the equations.

Some models are defined with differential rate equations, and you might need the
reactions to be compatible with your model. Two rules you can use to convert differential
rate equations to reactions are:

* For a positive term — The species described by the equation is placed on the right
as a product, and the species in the term are placed on the left as reactants.

+ For a negative term — The species described by the equation is placed on the left as
a product, and the species in the term are also placed on the left as reactants.

You need to determine the products using additional information, for example, a
reaction diagram, a description of the model, or an understanding of a reaction. If a
reaction is catalyzed by a kinase, then you can conclude that the product has one or
more additional phosphate groups.

A simple first-order reaction has differential rate equation dR/dt = +kr[P] - kFf[R].
The negative term implies that the reaction is R -> ? with an unknown product. The
positive term identifies the product and completes the reaction, R <-> P.

Reactions R1 to R3 from Equation E1

The differential rate equation 1 is repeated here for comparison with the reactions. See
“Differential Rate Equation 1, Cyclin (C)” on page C-4.

dc _
dt

v; —vgX —kqC

Kd +C
The reaction and reaction rate equations from the differential rate equation E1 are given

below:

ri reaction: null -> C
reaction rate: vi

r2 reaction: C -> null
reaction rate: kd*C
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r3 reaction: C -> null
reaction rate: (vd*X*C)/(Kd + C)

Reactions R4 and R5 from Equation E2
The differential rate equation 2 and algebraic equation 2 are repeated here for

comparison with the reactions. See “Differential Rate Equation 2, Kinase (M)” on page

C-4.

a . a-M) . M

dt 'K +(-M) 2K,+M
VM;[C]

Vy =t

17K, +[C]

The reaction and reaction rate equations from the differential rate equation E2 are given
below:

rd reaction: Mplus -> M
reaction rate: V1*Mplus/(K1 + Mplus)
repeatedAssignment rule: V1 = VM1*C/(Kc + C)

r5 reaction: M -> Mplus
reaction rate: V2*M/(K2 + M)

Reactions R6 and R7 from Equation E3

The differential rate equation for equation 3 and algebraic equation 3 is repeated here for
comparison with the reactions.

ax a1-x) X

dt  PKy+(1-X) *K,+X

V3 = VM3*[M]

The reaction and reaction rate equations from the differential rate equation E3 are given
below:

ré reaction: Xplus -> X
reaction rate: V3*Xplus]/(K3 + Xplus)
repeatedAssignment rule: V3 = VM3*M

r7 reaction: X -> Xplus
reaction rate: V4*X/(K4 + X)
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Calculating Initial Values for Reactions

After you converted the differential rate equations to the reactions and reaction rate
equations, you can start to fill in initial values for the species (reactants and products)
and parameters.

The initial values for parameters and amounts for species are listed with four different
units in the same dimension:
+ A — Original units in the Goldbeter 1991 paper.

+ B — Units of concentration with time converted to second. When converting a to b,
use 1 minute = 60 second for parameters.

X uM < le-6 mole/liter < 1 minute ~ Y mole
minute 1 uM 60 second liter*second

*  C — Units of amount as moles. When converting concentration to moles, use a cell
volume of 1e-12 liter and assume that volume does not change.

Y mole < le-12 liter _ Z mole
liter*second second

* D — Units of amount as molecules. When converting amount as moles to molecules,
use 6.022e23 molecules = 1 mole.

Z mole < 6.022e23 molecule _ N molecules
second 1 mole second

With dimensional analysis on and unit conversion off, select all of the units for one letter.
For example, select all of the As. If dimensional analysis and unit conversion are on, you
can mix and match letters and get the same answer.

Reaction 1 Cyclin Synthesis

R1 Valuve Units
reaction null -> C
reaction rate vi A. uM/minute

B. mole/(liter*second)

C. mole/second
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R1
parameters vi
species C

Reaction 2 Cyclin Undifferentiated Degradation

R2

reaction C -> null
reaction rate kd*C
parameters kd

species C

Reaction 3 Cyclin Protease Degradation

R3
reaction C -> null
reaction rate (vd*X*C)/(Kd + C)

Value
0.025
4.167e-10
4.167e-22
205

0.01

le-8
1.0e-20
6.022e+3

0.010
1.6667e-4
0.01

le-8
1.0e-20
6.022e+3

Units

. molecule/second

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second
uM

. mole/liter

mole

DaoampUYawpr g

. molecule

Units

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

. I/minute

C, D. 1/second

uM

. mole/liter

mole

SowWpEPwWEroUow

. molecule

Units

A. uM/minute

B. mole/(liter*second)
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R3

parameter vd
parameter Kd

species C (substrate)
species X (enzyme)

Reaction 4 Cdc2 Kinase Activation

R4
reaction

reaction rate

Mplus -> M

(V1*Mplus)/ (K1 +
Mplus)

repeatedAssignmVl = (VM1*C)/(Kc + C)

rule

parameter

V1 (variable by rule)

0.25
0.0042
0.02
2.0e-8
2.0e-020
12044
0.01

le-8
1.0e-20
6.022e+3
0.01

le-8
1.0e-20
6.022e+3

Units
C. mole/second

D. molecule/second
A. 1/minute

B, C, D. 1/second
A. uM

B. mole/liter

C. mole

D. molecule

A.uM

B. mole/liter

C. mole

D. molecule

A.uM

B. mole/liter

C. mole

D.

molecule

Units

A. uM/minute

B. mole/(liter*second)
C. mole/second

D. molecule/second

A. uM/minute

B. mole/(liter*second)
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R4

parameter

parameter

parameter

species

species

species

VM1

Kc

K1

Mplus (inactive substrate)

M (active product)

Reaction 5 Cdc2 Kinase Deactivation

C-12

Value

3.0
5.0e-8
5.0000e-020
30110
0.5
5.0000e-7
5.0e-19
3.011e+5
0.005
5e-9
5e-21
3.011e+3
0.99
9.9e-7
9.9e-19
5.962e+5
0.01

le-8
1.0e-20
6.022e+3
0.01

le-8
1.0e-20
6.022e+3

c
=
&

towWpOIQEPODOEPODOEPOIQOEPLOOE PO O

. mole/second

. molecule/second

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter
. mole

. molecule
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R6

reaction

reaction rate

R5
reaction

reaction rate

parameter

parameter

species

species

M -> M_plus

V2*M) /(K2 + M)

V2

K2

Mplus (inactive)

M (active)

Reaction 6 Protease Activation

Xplus -> X

(V3*Xplus)/(K3 + Xplus) ----

Valuve

1.5
2.5000e-008
2.5000e-020
15055

0.005
5.0000e-009
5.0000e-021
3011
1.0e-20

0.99

9.9e-7
9.9e-19
5.962e+5
0.01

le-8

1.0e-20
6.022e+3

Units

Units

DowpUOOEPODOEPOTIQOEPLOOWE R

. uM/minute

. (mole/liter-second)
. mole/second

. molecule/second
uM/minute

. mole/liter-second
. mole/second

. molecule/second
uM

. mole/liter

mole

. molecule

mole

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

A. uM/minute

B. mole/(liter*second)

C-13



C Minimal Cascade Model for a Mitotic Oscillator

R6

repeatedAssigniV3 = VM3*M

rule

parameter

parameter

parameter

species

species

species

V3 (variable by rule)

VM3

K3

Xplus (inactive substrate)

X (active product)

M (enzyme)

Reaction 7 Protease Deactivation

C-14

1.0
0.0167
0.005
5e-9
5e-21
3.011e+3
0.99
9.9e-7
9.9e-19
5.962e+5
0.01

le-8
1.0e-20
6.022e+3
0.01

le-8
1.0e-20
6.022e+3

Units

C.

D.

SompUOEPOOEPOQOEPIFPLO O W »

mole/second

molecule/second

. uM/minute
. mole/liter-second
. mole/second

. molecule/second

. 1/minute

C, D. 1/second
uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter
. mole

. molecule
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R7
reaction

reaction rate

parameter

parameter

species

species

X -> X_plus
VA*X)/ (K4 + X)

V4

K4

Xplus (inactive)

X (active)

SimBiology Simulation with Reactions

0.5
8.3333e-009
8.3333e-021
5.0183e+003
0.005

5e-9

5e-21

3011

0.99

9.9e-7
9.9e-19
5.962e+5
0.01

le-8

1.0e-20
6.022e+3

Units

DawpoamprProaoamptaoamprpaw

. uM/minute
. mole/(liter*second)
. mole/second

. molecule/second

uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter
. mole

. molecule

This is a simulation of Goldbeter's minimal mitotic oscillator with rate and algebraic
equations. Simulate with the sundials solver and plot species C, M, and X. For a
description of the model, see “SimBiology Model with Reactions” on page C-6.
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Model of the Yeast Heterotrimeric G Protein Cycle

Model of the Yeast Heterotrimeric G Protein Cycle

In this section...

“Background on G Protein Cycles” on page C-17
“Modeling a G Protein Cycle” on page C-18

“References” on page C-21

Background on G Protein Cycles

* “G Proteins” on page C-17

*  “G Proteins and Pheromone Response” on page C-18

G Proteins

Cells rely on signal transduction systems to communicate with each other and to

regulate cellular processes. G proteins are GTP-binding proteins that are involved in the
regulation of many cellular processes. There are two known classes of G proteins: the
monomeric G proteins (one GTPase), and the heterotrimeric G proteins (three different
monomers). The G proteins usually facilitate a step requiring energy. This energy is
supplied by the hydrolysis of GTP by a GTPase activating protein (GAP). The exchange of
GDP for GTP is catalyzed by a guanine nucleotide releasing protein (GNRP) [Alberts et
al. 1994].

GAP
Gprotein + GTP ﬁ Gprotein + GDP

G protein-coupled receptors (GPCRs) are the targets of many pharmaceutical agents.
Some estimates suggest that 40 to 50% of currently marketed drugs target GPCRs and
that 40% of current drug discovery focus is on GPCR targets. Some examples include
those for reducing stomach acid (ranitidine which targets histamine H2 receptor),
migraine (sumatriptan, which targets a serotonin receptor subtype), schizophrenia
(olanzapine, which targets serotonin and dopamine receptors), allergies (desloratadine,
which targets histamine receptors). One approach in pharmaceutical research is to model
signaling pathways to analyze and predict both downstream effects and effects in related
pathways. This tutorial examines model building and analysis of the G protein cycle in
the yeast pheromone response pathway using the SimBiology desktop.
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G Proteins and Pheromone Response

In the yeast Saccharomyces cerevisiae, G protein signaling in pheromone response is

a well characterized signal transduction pathway. The pheromone secreted by alpha
cells activates the G protein-coupled a-factor receptor (Ste2p) in a cells which results

in a variety of cell responses including cell-cycle arrest and synthesis of new proteins.
The authors of the study performed a quantitative analysis of this cycle, compared the
regulation of G protein activation in wild-type yeast haploid a cells with cells containing
mutations that confer supersensitivity to a-factor. They analyzed the data in the context
of cell-cycle arrest and pheromone-induced transcriptional activation and developed a
mathematical model of the G protein cycle that they used to estimate rates of activation
and deactivation of active G protein in the cell.

Modeling a G Protein Cycle

+ “Reactions Overview” on page C-18

+ “Assumptions, Experimental Data, and Units in the G Protein Model” on page
C-20

Reactions Overview

Systems biologists represent biological pathways and processes as reactions with reaction
rates, and treat the components of these pathways as individual species.

The G protein cycle in the yeast pheromone-response pathway can be condensed into
a set of biochemical reactions. These reactions are complex formation, transformation,
or disassociation reactions that Yi and colleagues [Yi et al. 2003] use to simplify and
describe the system. In this example, a-factor, a-factor receptor, and the G protein
subunits are all treated as species participating in reactions. The system can be
graphically represented as follows.
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Graphical Representation of the G protein cycle in yeast pheromone response. The numbers

represent reaction numbers referenced in the text. L= Ligand (alpha factor), R = alpha-factor receptor,
by = free levels of G-beta:G-gamma complex, Ga = active G-alpha-GTF, Gd = inactive G-alpha-GDP,
G = inactive Gbhy:Gd complex.

The following table shows you the reactions used to model the G protein cycle and
the corresponding rate constants (rate parameters) for each reaction. For reversible
reactions, the forward rate parameter is listed first.

No. Name

1
2

Receptor-ligand interaction

Heterotrimeric G protein
formation

G protein activation

Receptor synthesis and
degradation

Receptor-ligand degradation

G protein inactivation

Reaction
L + R <->RL
Gd + Gbg -> G

RL + G -> Ga + Gbg + RL
R <-> null

RL -> null
Ga -> Gd

Rate Parameters
KRL, KRLm
kG1

kGa
kRdo, kRs

kRD1
kGd
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C-20

Note that in reaction 3 (G protein activation), RL appears on both sides of the reaction.
This is because RL is treated as a modifier or catalyst, and the model assumes that there
1s no synthesis or consumption of RL in this reaction.

The authors use a set of ordinary differential equations (ODEs) to describe the system.
In the software, you can represent the biological pathway as a system of biochemical
reactions and the software creates the ODEs for you. Alternatively, if you have a set of
ODEs that describe your system you can enter these as rate rules. For an example of
modeling using rate rules, see “SimBiology Model with Rate Rules” on page C-5.

Assumptions, Experimental Data, and Units in the G Protein Model

The authors have obtained experimental data either through their own measurements
or through published literature. As with any other model, the G protein cycle model
simplifies the biological process while also trying to reconcile the experimental data.
Consider these points:

* Reaction 2 — Binding and formation of the heterotrimeric G protein complex is
treated as a single-step reaction.

* Reaction 3 — Activation of G protein is modeled as a single-step. Guanine nucleotide
exchange factors (GEF's) are not modeled.

* Reactions 3 and 6 — The parameters for the rate of G protein activation and
deactivation (kGa and kGd) have been estimated based on the dose response curves
in the reference paper. The SimBiology model being built in this tutorial directly uses
those values.

* Reactions 4 and 5 — Receptor synthesis and degradation are handled purely as two
simple reaction steps.

* Reaction 6 — Deactivation of G protein by the regulator of G protein signaling (RGS)
protein Sst2p is modeled as a single step. Sst2p is not modeled.

The reaction is modeled with an estimated reaction rate of 0.11 S_l) in the Sst2p
containing wild-type strain. The uncatalyzed reaction rate is estimated to be 0.004

s™'in a strain with a deletion of SST2 (sst2A, mutant strain).
*  Free GDP, GTP, and Pi are not included in the model.

This tutorial shows you how to plot the experimental data over the simulation plot of
the active G protein fraction. You can estimate the values of the experimental data
of interest for this example from the coordinates of the plots found in Figure 5 of the
reference paper [Yi et al. 2003]. The following values were obtained by comparing the
coordinates of the standards with those of the unknowns in the figure.
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Time Fraction of Active Ga (Experimental)
0 0.00
10 0.35
30 0.40
60 0.36
110 0.39
210 0.33
300 0.24
450 0.17
600 0.20

Note: The SimBiology Dimensional Analysis feature is not used in this tutorial. For
this tutorial, the values of all species are converted to have the unit molecule, and

all rate parameters are converted to have either the unit 1/second or the units 1/
(molecule*second), depending on whether the reaction is first or second order. You
should leave the InitialAmountUnits box for species and the ValueUnits box for rate
parameters empty for the models in this tutorial.
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Related Examples

. “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast
Heterotrimeric G Protein Cycle”
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Model of M-Phase Control in Xenopus Oocyte Extracts

C-22

John Tyson's Computational Cell Biology Lab created a mathematical model for M-phase
control in Xenopus oocyte (frog egg) extracts [Marlovits et al. 1998]. The M-phase control
model shows principles by which you can apply phosphorylation and regulatory loops in
your own models. Publications typically list systems of ordinary differential equations
(ODEs) that represent a model system. This example shows you how to interpret these
ODEs in the form of reaction pathways that are easier to represent and visualize in
SimBiology software.

The model is centered around M-phase promoting factor (MPF). There are two positive
feedback loops where MPF increases its synthesis and a negative feedback loop where
MPF decreases its amount by increasing its degradation.

In this section...

“M-Phase Control Model” on page C-22

“M-Phase Control Equations” on page C-24

“SimBiology Model with Rate and Algebraic Rules” on page C-32
“SimBiology Model with Reactions and Algebraic Rules” on page C-38

“References” on page C-55

M-Phase Control Model

+  “Synthesis Reactions” on page C-22
+ “Regulation Reactions with Active MPF” on page C-23

Synthesis Reactions

Cyclin B (CycB) dimerizes with Cdc2 kinase (Cdc2) to form M-phase promoting factor
(MPF).
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Regulation Reactions with Active MPF

Positive feedback loops with M-phase promoting factor (MPF) activate the Cdc25
phosphatase and deactivate the Weel kinase. A negative feedback loop with MPF
activates anaphase-promoting complex (APC) that regulates the degradation of the
Cyclin B subunit.
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M-Phase Control Equations

+  “About the Rate Equations in This Example” on page C-25

+ “Converting Differential Equations to Reactions” on page C-25

+ “Equation 1, Cyclin B” on page C-26

+ “Equation 2, M-Phase Promoting Factor” on page C-26

+ “Equation 3, Inhibited M-Phase Promoting Factor” on page C-27

+ “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page C-28
+ “Equation 5, Activated M-Phase Promoting Factor” on page C-28

+ “Equation 11, Cell Division Control 25” on page C-29
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+ “Equation 12, Weel Activation/Deactivation” on page C-30

+ “Equation 13, Intermediate Enzyme Activation/Deactivation” on page C-30
+ “Equation 14, APC Activation/Deactivation” on page C-31

+ “Equation 17, Rate Parameter K2” on page C-31

+ “Equation 18, Rate Parameter Kcdc25” on page C-31

+ “Equation 19, Rate Parameter Kweel” on page C-32

About the Rate Equations in This Example

Models in systems biology are commonly described in the literature with differential rate
equations. However, SimBiology software defines a model using reactions. This section
shows you how to convert models published in the literature to a SimBiology format.

The equation numbers match the published paper for this model [Marlovits et al. 1998].
Equations that are missing in the sequence involve the Cdk inhibitor (CKI) protein,
which is not currently modeled in the SimBiology version.

Converting Differential Equations to Reactions

The rules for writing reaction and reaction rate equations from differential rate
equations include not only the equations but also an understanding of the reactions. dx/
dt refers to the species the differential rate equation is defining. kKinetics refers to the
species in the reaction rate.

+ Positive terms: Rate species are placed on right side of the reactions; reaction rate
equation species are placed on the left.

kinetics — %
dt

+ Negative terms: Rate species are placed on the left side of the reaction because the
species are being used up in some way; reaction rate equation species are also placed
on left. You need to deduce the products from additional information about the model.

kinetics or ( %) — products?

The following table will help you deduce the products for a reaction. In this example, by
convention, phosphate groups on the right side of a species name are activating while
phosphate groups on left are inhibiting.
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Enzyme Description Reaction

weel Kinase, add inhibiting phosphate MPF — P-MPF
group

cdc25 Phosphatase, remove inhibiting P-MPF —> MPF + P
phosphate group

kcak Kinase, add activating phosphate MPF —> MPFp
group

kpp Phosphatase, remove activating MPF-P —> MPF + P
phosphate group

MPF Kinase, add activating or inhibiting Weel/Cdc25/1E —> X-P or P-X
phosphate group

ki Add inhibiting Cki Cki + MPF —> Cki:MPF

kir Remove inhibiting Cki Cki:MPF —> Cki + MPF

Equation 1, Cyclin B

Differential rate equation for cyclin B [Marlovits et al. 1998].

ACYeBI _ 111 k9CycB] k3[Cde2][CycB]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 1 [CycB] = k1 - K2*[CycB] - k3*[Cdc2]*[CycB]

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 1 AA -> CycB v = ki1
Reaction 2 CycB -> AA v = K2*[CycB]
Reaction 3 Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

Equation 2, M-Phase Promoting Factor

Differential rate equation for M-phase promoting factor (MPF) [Marlovits 1998]. Note
that the parameter name kcakr [Marlovits et al. 1998] is changed to kpp [Borisuk 1998]
in the following reaction equations. MPF is a heterodimer of cdc2 kinase and cyclin B.
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dIMPF]
dt

=+k3[Cdc2][CycB] -K2[MPF]

+kpp[MPFp] -kcak[MPF]
+Kcdce25[pMPF] -Kweel [MPF]
+kir{ Cki:MPF] -ki[ MPF][ Cki]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 2 MPF = kpp*MPFp - (Kweel + kcak + K2)*MPF + Kcdc25*pMPF + k3*Cdc2*CycB

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38. A reaction name in parentheses denotes a reaction repeated in another
differential rate equation.

(Reaction 3) Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]
Reaction 4 MPF -> Cdc2 + AA v = K2*[MPF]
Reaction 5 MPFp -> MPF v = kpp*[MPFp]
Reaction 6 MPF -> MPFp v = kcak*[MPF]
Reaction 7 pMPF -> MPF v = Kcdc25*[pMPF]
Reaction 8 MPF -> pMPF v = Kweel*[MPF]

Equation 3, Inhibited M-Phase Promoting Factor

Differential rate equation for inhibited M-phase promoting factor (phMPF) [Marlovits
1998].

dlpMPF] _

_K2[pMPF]
dt P

+kpplpMPFp] -kcak[pMPF]
+Kweel[MPF] -Kedc25[pMPF]
+kd[Cki:pMPF]

Rate rule using SimBiology format for the differential rate equation 3. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.
Rule 3 pMPF = Kweel*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.
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C-28

Reaction 11 pMPF -> Cdc2 + AA v = K2*[pMPF]
Reaction 12 pMPFp -> pMPF v = kpp*[pMPFp]
Reaction 13 pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 8) MPF -> pMPF v = Kweel*[MPF]
(Reaction 7) pMPF -> MPF v = Kcdc25*[pMPF]

Equation 4, Inhibited and Activated M-Phase Promoting Factor

Differential rate equation for inhibited and activated M-phase promoting factor (pMPFp)
[Marlovits 1998].

% — K2[pMPFp]

+kcak[pMPF] -kpp[pMPFp]
+Kweel[MPFp] -Kedc25[pMPFp]
+kd[Cki:pMPFp]

Rate rule using SimBiology format for the differential rate equation. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 4 pMPFp = Kweel*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 15 pMPFp -> Cdc2 + AA v = K2*[pMPFp]
(Reaction 13) pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 12) pMPFp -> pMPF v = kpp*[pMPFp]
Reaction 16 MPFp -> pMPFp v = Kweel*[MPFp]
Reaction 17 pMPFp -> MPFp v = Kcdc25*[pMPFp]

Equation 5, Activated M-Phase Promoting Factor

Differential rate equation for activated M-phase promoting factor (MPFp) [Marlovits
1998].
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@= “K2[MPFp]

+kcak[ MPF] -kpp[MPFp]
+Kcde25[pMPFp] -Kweel[MPFp]
+kir[ CKI:MPFp] -ki[ CKI][MPFp]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 5 MPFp = kcak*MPF - (kpp + Kweel + K2)*MPFp + Kcdc25*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 19 MPFp -> MPF + AA v = K2*[MPFp]
(Reaction 6) MPF -> MPFp v = kcak*[MPF]
(Reaction 5) MPFp -> MPF v = kpp*[MPFp]
(Reaction 17) pMPFp -> MPFp v = Kcdc25*[pMPFp]
(Reaction 16) MPFp -> pMPFp v = Kweel*[MPFp]

Equation 11, Cell Division Control 25

Differential rate equation for activating and deactivating Cdc25 [Marlovits 1998].

d[Cdc25p] N k25[MPFp][Cdc25]  k25r[Cdc25p]
dt Km25+[Cdc25] Km25r+[Cdc25p]

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32. Note
that since there isn't a rate rule for Cdc25, its amount is written as (TotalCdc25 -
Cdc25p).

Rule 11 Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p)) - (k2!

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.
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C-30

Reaction 36 Cdc25 -> Cdc25p, Vv
Reaction 37 Cdc25p -> Cdc25, v

k25*[MPFp]*[Cdc25]/(Km25 + [Cdc25]1)
k25r*[Cdc25p]/ (Km25r + [Cdc25p])

Equation 12, Wee1 Activation/Deactivation

Differential rate equation for activating and deactivating Weel kinase [Marlovits 1998].
The kinase (MPFp) phosphorylates active Weel (Weel) to its inactive form (Weelp). The
dephosphorylation of inactive Weel (Weelp) is by an unknown phosphatase.

d[Weel] __ kul MPFp][Weel] + kwr{WeelP]
dt Kmuw +[Weel] Kmuwr +[WeelP]

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 12 Weelp = (kw*MPFp*(TotalWeel - Weelp))/(Kmw + (TotalWeel - Weelp))
- (kwr*Weelp)/(Kmwr + Weelp)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

reaction 38 Weel -> Weelp, Vv
reaction 39 Weelp -> Weel, v

(kw*[MPFp]*[Weel])/(Kmw + [Weel])
(kwr*[Weelp])/(Kmwr + [Weelp])

Equation 13, Intermediate Enzyme Activation/Deactivation

Differential rate equation for activating and deactivating the intermediate enzyme (IE)
[Marlovits 1998]. The active kinase (MPFp) phosphorylates the inactive intermediate
enzyme (IE) to its active form (IEp).

dlEp] _ N kiel MPFpllIE]  kierl IEp]
dt Kmie+[IE]  Kmier+[IEp]

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 13 IEp = (kie*MPFp*(TotallE - 1Ep))/(Kmie + (TotallE - IEp))
- (kier*IEp)/(Kmier + IEp)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules’
on page C-38.

i

reaction 40 IE -> 1Ep, v = (kie*[MPFp]*[IE])/(Kmie + [IE])
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reaction 41 1Ep -> 1E, v = (kier*[IEp])/(Kmier + [IEp])
Equation 14, APC Activation/Deactivation

Differential rate equation for [Marlovits 1998].

dlAPCa] _ N kaplIEP][APCi]  kaprl APCa]
dt Kmap +[APCi] Kmapr+[APCal

Rate rule in SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Rule 14 APCa = (kap*lEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
- (kapr*ApPCa)/(Kmapr + APCa)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-38.

Reaction 42 APCi -> APCa, v = (kap*[IEp]*[APCi])/(Kmap + [APCi])
Reaction 43 APCa -> APCi, Vv = (kapr*[APCal)/(Kmapr + [APCa])

Equation 17, Rate Parameter K2

Algebraic equation to define the rate parameter K2 [Marlovits 1998]. Inactive APC
(APCi) is catalyzed by IE (intermediate enzyme) to active APC (APCa).

k2 = V2'[APC] + V27 [APC’]
Algebraic rule in SimBiology format for the algebraic equation 17. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 17 V2i*(TotalAPC - APCa) + V2a*APCa - K2

Algebraic rule when simulating with reactions. For a model using this rule with
reactions, see “SimBiology Model with Reactions and Algebraic Rules” on page C-38.

V2" is renamed to V21 and V2”is renamed to V2a. APCi (APC) is the inactive form of the
enzyme while APCa (APC') is the active form. K2 is the independent variable.

Algebraic Rule 1 (V2i*APCi) + (V2a*APCa) - K2
Equation 18, Rate Parameter Kedc25

Algebraic equation to define the rate parameter Kcdc25 [Marlovits 1998]. Inactive Cdc25
(Cdc25) is phosphorylated by MPF to active Cdc25 (Cdc25p).
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C-32

kedce25 = V25 [Cde25] + V25"[Cdc25p]

Algebraic rule in SimBiology format for the algebraic equation 18. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 18 V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic rule when simulating with reactions. Kcdc25 is the independent variable.
For a model using this rule with reactions, see “SimBiology Model with Reactions and
Algebraic Rules” on page C-38.

Algebraic Rule 2 (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25
Equation 19, Rate Parameter Kweel

Algebraic equation to define the rate parameter [Marlovits 1998]. Active Weel (Weel) is
phosphorylated by MPF to inactive Weel (Weelp).

kweel = Vwee1’[Weelp] + Vweel”’[Weel ]

Algebraic rule in SimBiology format for rate parameter equation 19. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page C-32.

Algebraic Rule 19 Vweeli*Weelp + Vweela*(TotalWeel - Weelp) - Kweel

Algebraic rule when simulating with reactions. Kweel is the independent variable.
For a model using this rule with reactions, see “SimBiology Model with Reactions and
Algebraic Rules” on page C-38.

Algebraic Rule 3 (Vweeli*Weelp) + (Vweela*Weel) - Kweel

SimBiology Model with Rate and Algebraic Rules

+ “Overview” on page C-33

+  “Writing Differential Rate Equations as Rate Rules” on page C-33
+ “Species” on page C-34

+ “Parameters” on page C-34

+ “Rate Rule 1, Cyclin B (CycB)” on page C-35
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“Rate Rule 2, M-Phase Promoting Factor (MPF)” on page C-36
“Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)” on page C-36

“Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)” on page
C-36

“Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)” on page C-36
“Rate Rule 11, Activated Cdc25 (Cde25p)” on page C-37

“Rate Rule 12, Inhibited Weel (Weelp)” on page C-37

“Rate Rule 13, Activated Intermediate Enzyme (IEp)” on page C-37

“Rate Rule 14, Activated APC (APCa)” on page C-37

“Algebraic Rule 17, Rate Parameter K2” on page C-37

“Algebraic Rule 18, Rate Parameter Kcdc25” on page C-38

“Algebraic Rule 19, Rate Parameter Kweel” on page C-38

Overview

There is one rate rule for each equation defining a species and one algebraic rule for
each variable parameter in the M-phase control model [Marlovits 1998]. For a list and
description of the equations, see “M-Phase Control Equations” on page C-24.

A basic model includes rate rules 1 to 5 and 11 to 14 with algebraic rules 17, 18, and 19.

Writing Differential Rate Equations as Rate Rules

Writing differential rate equations in an unambiguous format that a software program
can understand is a simple process when you follow the syntax rules for programming
languages.

Use an asterisk to indicate multiplication. For example, K[A] is written k*A or
k*[A]. The brackets around the species A do not indicate concentration.

SimBiology uses square brackets around species and parameter name to allow names
that are not valid MATLAB variable names. For example, you could have a species
named glucose-6-phosphate dehydrogenase but you need to add brackets
around the name in reaction rate and rule equations.

[glucose-6-phosphate dehydrogenase]

Use parentheses to clarify the order of evaluation for mathematical operations.
For example, do not write Henri-Michaelis-Menten reaction rates as Vm*C/Kd +

C-33



C  Model of M-Phase Control in Xenopus Oocyte Extracts

C, because Vm*C is divided by Kd before adding C to the result. Instead, write this
reaction rate as (Vm*C)/(Kd + C).

Species

The following table lists species in the model with their initial amounts. There are three
variable parameters modeled as species (K2, Kcdc25, and KWeel). You could also model
the variable parameters as parameters with the property ConstantAmount cleared.

Marme Initial&mount £ [Initial&mountlinits | ConstantAmount
CycB 0.0 =1 r
MPF 0.0 =1 r
nhPF 0.0 =1 r
pMPFp 0.0 =1 r
MPFp 0.0 =1 r
Crlc25p 0.0 =1 r
YWeelp 0.0 =1 r
IEp 0.0 =1 r
APCa 0.0 =1 r
Krede25 0.0 =1 r
Kweel 0.0 =1 r
K2 0.0 =1 r
Yeel 0.0 =1 r
TotalCdc25 1.0 =1 73
Totalvee 1.0 =1 73
TotalAPC 1.0 =1 73
TotallE 1.0 =1 r
PPase 1.0 =1 73
AntisPC 1.0 =1 73
Crlec2 100.0 =1 73
Parameters

The following table lists parameters in the model with their initial values. The property
ConstantValue is selected for all of the parameters.
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Marme “Walug © “aluellnits Constantyalue
Yiveea 1.0 =] e
k1 1.0 =1 74
K 1.0 =] e
Kmapr 1.0 =1 W
K25t 1.0 =l W
kcak 0.64 =1 74
W2a 0.25 =l W
254 0.17 =1 74
kier 0.15 =l W
kapr 0.13 =1 74
kap 0.13 =l W
kst 0.1 =1 74
k25¢ 0.1 =l W
Krrwy 0.1 =1 74
Kmz5 0.1 =l W
kie 0.02 =1 74
ke 0.02 =l W
k25 0.02 =1 74
W25 0.017 =l W
e 0.01 =1 74
Kmier 0.01 =] e
Krnie 0.01 =1 74
Kmap 0.01 =l W
2] 0.0050 =1 74
k3 0.0050 =l W
kpp 0.0040 | 7

Rate Rule 1, Cyclin B (CycB)
The rate rule is from “Equation 1, Cyclin B” on page C-26.

rate rule: CycB
species: CycB

kl - K2*CycB - k3*Cdc2*CycB
0 nM
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100 nM, [x]Jconstant

parameters: kl = 1 nM/minute
K2 = 0 1/minute, [Jconstant
k3 = 0.005 1/(nM*minute)

K2 is a variable rate parameter whose value is defined by an algebraic rule. See
“Algebraic Rule 17, Rate Parameter K2” on page C-37. Its value varies from 0.005 to
0.25 1/minute.

Rate Rule 2, M-Phase Promoting Factor (MPF)

The rate rule is from “Equation 2, M-Phase Promoting Factor” on page C-26.

rate rule: MPF = kpp*MPFp - (Kweel + kcak + K2)*MPF + Kcdc25*pMPF
+ k3*Cdc2*CycB
species: MPF = 0 nM

MPFp = 0 nM
pMPF = 0 nM

parameters: kpp = 0.004 1/minute
kcak = 0.64 1/minute
k3 = 0.005 1/(nM*minute)
K2 = 0 1/minute
Kede25 = 0 1/minute
Kweel = 0 1/minute

K2, Kcdc25, and Kweel are variable rate parameters whose values are defined by
algebraic rules. See “Algebraic Rule 17, Rate Parameter K2” on page C-37, “Algebraic
Rule 18, Rate Parameter Kcdc25” on page C-38, and “Algebraic Rule 19, Rate
Parameter Kweel” on page C-38.

Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)

The rate rule is from “Equation 3, Inhibited M-Phase Promoting Factor” on page
C-27.

rate rule: pMPF = Kweel*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp
Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)

i

The rate rule is from “Equation 4, Inhibited and Activated M-Phase Promoting Factor’
on page C-28.

rate rule: pMPFp = Kweel*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF
Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)

The rate rule is from “Equation 5, Activated M-Phase Promoting Factor” on page
C-28.
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rate rule: MPFp = kcak*MPF - (kpp + Kweel + K2)*MPFp + Kcdc25*pMPFp
Rate Rule 11, Activated Cdc25 (Cdc25p)

The rate rule is from “Equation 11, Cell Division Control 25” on page C-29.

rate rule: Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p))
- (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Rate Rule 12, Inhibited Weel (Wee1p)

The rate rule is from “Equation 12, Weel Activation/Deactivation” on page C-30.

rate rule: Weelp = (kw*MPFp*(TotalWeel - Weelp))/(Kmw + (TotalWeel - Weelp))
- (kwr*PPase*Weelp)/(Kmwr + Weelp)

Rate Rule 13, Activated Intermediate Enzyme (IEp)

The rate rule is from “Equation 13, Intermediate Enzyme Activation/Deactivation” on
page C-30.

rate rule: 1Ep = (kie*MPFp*(TotallE - IEp))/(Kmie + (TotallE - IEp))
- (kier*PPase*IEp)/(Kmier + IEp)

Rate Rule 14, Activated APC (APCa)

The rate rule is from “Equation 14, APC Activation/Deactivation” on page C-31.

rate rule: APCa = (kap*l1Ep*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
- (kapr*AntiAPC*APCa)/(Kmapr + APCa)

Algebraic Rule 17, Rate Parameter K2

K2 is a variable rate parameter whose value is determined by the amount of active and
inactive APC. The algebraic rule is from “Equation 17, Rate Parameter K2” on page
C-31.

algebraic rule: V2i*(TotalAPC - APCa) + V2a*APCa - K2
species: APCi = 1 nM
APCa = 0 nM
TotalAPC = 1 nM [x]constant
parameters: K2 0 or 0.25 1/minute, [Jconstant
V2i 0.005 1/(nM*minute)
V2a = 0.25 1/(nM*minute)
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Algebraic Rule 18, Rate Parameter Kedc25

Kcdc25 is a variable rate parameter whose value is determined by the amount of active
and inactive Cdc25. The algebraic rule is from “Algebraic Rule 18, Rate Parameter
Kcdc25” on page C-38.

algebraic rule: V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25
Algebraic Rule 19, Rate Parameter Kweel

Kweel is a variable rate parameter whose value is determined by the amount of active
and inactive Weel. The algebraic rule is from “Equation 19, Rate Parameter Kweel” on
page C-32.

algebraic rule: Vweei*Weelp + Vweea*(TotalWeel - Weelp) - Kweel

SimBiology Model with Reactions and Algebraic Rules

+ “Overview” on page C-39

+ “Reaction 1, Synthesis of Cyclin B” on page C-39

+ “Reaction 2, Degradation of Cyclin B” on page C-40

* “Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase” on page C-41

+ “Reaction 4, Degradation of Cyclin B on MPF” on page C-42

+ “Reaction 5, Deactivation of Active MPF” on page C-43

* “Reaction 6, Activation of MPF” on page C-44

+ “Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF” on page C-45

*  “Reaction 8, Inhibition of MPF by Phosphorylation” on page C-46

+ “Reaction 11, Degradation of Cyclin B on Inhibited MPF” on page C-48

+ “Reaction 12, Deactivation of MPF to Inhibited MPF” on page C-48

+ “Reaction 13, Activation of Inhibited MPF” on page C-48

* “Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF” on page C-49
* “Reaction 16, Inhibit MPF by Phosphorylation” on page C-49

+ “Reaction 17, Remove Inhibiting Phosphate from Activated MPF” on page C-49
+ “Reaction 19, Degradation of Cyclin B on Activated MPF” on page C-50
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* “Reaction 36, Activation of Cdc25 by Activated MPF” on page C-50

+ “Reaction 37, Deactivation of Cdc25” on page C-50

+ “Reaction 38, Deactivation of Weel by Active MPF” on page C-51

* “Reaction 39, Activation of Weel” on page C-51

+ “Reaction 40, Activation of Intermediate Enzyme by Active MPF” on page C-51
+ “Reaction 41, Deactivation of IE” on page C-51

* “Reaction 42, APC Activation by IEp” on page C-52

+ “Reaction 43, APC Deactivation” on page C-52

+ “Block Diagram of the M-Phase Control Model with Reactions” on page C-52

Overview

There can be one or more reactions for an equation defining a species and one algebraic
rule for each variable parameter in the M-phase control model [Marlovits 1998]. For a

list and description of the equations, see “M-Phase Control Equations” on page C-24.

A basic model includes reactions 1 to 8, 11 to 13, 15 to 17, 19, and 36 to 43 with algebraic

rules from equations 17, 18, and 19.
Reaction 1, Synthesis of Cyclin B

Cyclin B is synthesized at a constant rate.

reaction: AA -> CycB
reaction rate: k1 nM/minute
parameter: k1l = 1 nM/minute
species: CycB = 0 nM
AA = 100 nM [x]Jconstant [x]boundary

Simulate reaction 1 with the sundials solver.
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Reaction 2, Degradation of Cyclin B

Cyclin B is degraded at the end of the M-phase.

reaction: CycB -> AA
reaction rate: K2*CycB nM/minute
parameters: K2 0 1/minute, [Jconstant, variable by rule

V2i 0.005 1/nM*minute
V2a 0.25 1/nM*minute

species: CycB 0 nM
APCi 1 nM
APCa 0 nM
AA = 100 nM [x]Jconstant [x]boundary

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Initially, Cyclin B degradation is low. This implies the amount of active APC (APCa) =0
and inactive APC (APCi) = APCtotal = 1 nM.

Test the algebraic rule by simulating reactions 1 and 2 with APCi = 0 and APCa = 1.
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Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase

Cyclin B dimerizes with Cdc2 kinase to form M-phase promoting factor (MPF).

reaction: Cdc2 + CycB -> MPF
reaction rate: k3*Cdc2*CycB nM/minute

parameters: k3 = 0.005 1/(nM*minute)
species: Cdc2 = 100 nM
CycB = 0 nM
MPF = O nM

Test the model by simulating with K2 = 0.25.
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Reaction 4, Degradation of Cyclin B on MPF

Cyclin B is tagged with ubiquitin groups and degrades while bound to Cdc2.

reaction: MPF -> Cdc2 + AA
reaction rate: K2*[MPF]
parameters: K2 = 0 or 0.25 1/minute, variable by rule

v2i = 0.005 1/(nM*minute)

v2a = 0.25 1/(nM*minute)
species: MPF = 0 nM

APCi = 1 nM

APCa = 0 nM

AA = 100 nM [x]Jconstant [x]boundary
algebraic rule: (V2i*APCi) + (v2a*APCa) - K2

Test the simulation with APCa = 1 and APCi = 0. Because the amount of APCa
(active) is high, K2 increases and the degradation starts to balance the synthesis of MPF.
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Reaction 5, Deactivation of Active MPF

Active MPF (MPFp) is dephosphorylated on Thr-161 by an unknown phosphatase (PP) to
inactive MPF (MPF).

reaction: MPFp -> MPF

reaction rate: kpp*[MPFp]
parameters: kpp = 0.004 1/minute

species: MPFp = 0 nM

MPF = 0 nM

kcakr = 0.004 1/minute [Marlovits 1998, p. 175], but is renamed to kpp [Borisuk
1998].

Test simulation with APCa = 1 and APCi = 0. MPF increases without reaching steady
state.
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Reaction 6, Activation of MPF

Inactive MPF (MPF) is phosphorylated on Thr-161 by an unknown cyclin activating
kinase (CAK).

reaction: MPF -> MPFp

reaction rate: kcak*[MPF]
parameters: kcak = 0.64 1/minute

species: MPF = 0 nM

MPFp = 0 nM

The kinase reaction that phosphorylates MPF to the active form is 160 times faster than
the phosphatase reaction that dephosphorylates active MPF.

Simulate the model with reactions 1 to 6. Notice that after adding reaction 6, most of the
product goes to active MPF (MPFp).
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Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF

Cdc25 phosphatase removes the inhibiting phosphate groups at the threonine 14 and
tyrosine 15 residues on Cdc2 kinase.

reaction:
reaction rate:
parameters:

species:

pMPF -> MPF

Kede25* [ pMPF]

Kede25 = 0.0 1/minute or 0.017 1/minute, variable by
algebraic rule

V251 = 0.017 1/(mM*minute)
V25a = 0.17 1/mM*minute
pMPF = 0 nM

MPF = 0 nM

Cdc25 = 1 nM (inactive)

Cdc25p = 0 nM (active)

algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Initially, all of the Cdc25 phosphatase is in the inactive form (Cdc25).

Enter the initial value for Kede25 as 0.0 and let the first time step calculate the value
from the rule, or enter an initial value using the rule.
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Initially, set ConstantAmount for Cdc25 and Cdc25p to test reactions 1 through 7.
Then after you can add the reactions to regulate the Cdc25 phosphatase by clearing the
ConstantAmount property.

Reaction 8, Inhibition of MPF by Phosphorylation

Addition of inhibiting phosphate groups by Weel kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Weel.

reaction: MPF -> pMPF
reaction rate: Kweel*[MPF]
parameters: Kweel = 0.0 1/minute or 0.01 1/minute, variable by
algebraic rule

Vweeli = 0.01 1/(nM*minute)

Vweela = 1.0 1/(nM*minute)
species: MPF = 0 nM

pMPF = 0 nM

Weelp = 1 nM (inactive)
Weel = 0 nM (active)
algebraic rule: (Vweeli*Weelp) + (Vweela*Weel) - Kweel

The initial capitalization for the parameter Kweel is a convention to indicate that this
value changes during the simulation.

Test the simulation for reactions 1 through 8 with Weelp (inactive) = 1 and Weel
(active) = 0.
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Test the simulation with Weelp (inactive) = 0 and Weel (active) = 1.
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Reaction 11, Degradation of Cyclin B on Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to Cdc2.

reaction: pMPF -> Cdc2 + AA
reaction rate: K2*[pMPF] nM/minute
parameters: K2 = 0 or 0.25 1/minute, variable by rule

V2i = 0.005 1/nM*minute

V2a = 0.25 1/nM*minute
species: MPF = 0 nM

APCi = 1 nM

APCa = 0 nM

AA = 100 nM [x]Jconstant [x]boundary
Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Test the simulation with Weel active (Weel = 1) and APC active (APCi = 1).
Reaction 12, Deactivation of MPF to Inhibited MPF

Inhibited/active MPF (pMPFp) is dephosphorylated on Thr-161 by an unknown
phosphatase (PP) to inhibited MPF (pMPF). Compare reaction 12 with reaction 5.

reaction: pMPFp -> pMPF
reaction rate: kpp*[pMPFp]
parameters: kpp = 0.004 1/minute
species: pMPFp 0 nM
PMPF 0 nM

Reaction 13, Activation of Inhibited MPF

Inhibited MPF (pMPF) is phosphorylated on Thr-161 by an unknown cyclin-activating
kinase (CAK). Compare reaction 13 with reaction 6.

reaction: pMPF -> pMPFp
reaction rate: kcak*[pMPF] nM/minute
parameters: kcak = 0.64 1/minute
species: pMPF = 0 nM
pMPFp = 0 nM

Test the simulation with Weelp = 1 (inactive)/ Weel = 0 and then test with Weelp =0
(inactive)/ Weel = 1.
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Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to cdc2 kinase.

reaction: pMPFp -> Cdc2 + AA
reaction rate: K2*[pMPFp] nM/minute
parameters: K2 = 0 or 0.25 1/minute, variable by rule

v2i = 0.005 1/nM*minute

v2a = 0.25 1/nM*minute
species: MPF = 0 nM

APCi = 1 nM

APCa = 0 nM

AA = 100 nM [x]Jconstant [x]boundary
Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 16, Inhibit MPF by Phosphorylation

Addition of inhibiting phosphate groups by Weel kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Weel.

reaction: MPFp -> pMPFp
reaction rate: Kweel*[MPFp] nM/minute
parameters: Kweel = 1/minute [Jconstant, variable by rule

Vweei = 0.01 1/nM*minute

Vweea = 1 1/nM*minute
species: MPFp = 0 nM

pMPFp = 0 nM

Weelp = 1 nM (inactive)

Weel = 0 nM (active)
algebraic rule: (Vweeli*Weelp) + (Vweela*Weel) - Kweel

Reaction 17, Remove Inhibiting Phosphate from Activated MPF

Remove the inhibiting phosphate group from pMPFp with cdc25 phosphatase.

reaction: pMPFp -> MPFp
reaction rate: Kcdc25*[pMPFp]
parameters: Kcdc25 = 0 1/minue, [Jconstant, variable by rule
V25i = 0.017 1/nM*minute
V25a = 0.17 1/nM*minute
species: pMPFp = 0 nM
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MPFp = O nM
algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Reaction 19, Degradation of Cyclin B on Activated MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with
ubiquitin groups and degrades while bound to cdc2 kinase.

reaction: MPFp -> MPF + AA
reaction rate: K2*[MPFp] nM/minute
parameters: K2 = 0 or 0.25 1/minute, variable by rule

V2i = 0.005 1/nM*minute

V2a = 0.25 1/nM*minute
species: MPF = 0 nM

MPFp = 0 nM

APCi =1 nM

APCa = 0 nM

AA = 100 nM [x]Jconstant [x]boundary
Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 36, Activation of Cdc25 by Activated MPF

Activation of cdc25 phosphatase by phosphorylation with active M-phase promoting
factor (MPFp).

reaction: Cdc25 + (MPFp) -> Cdc25p + (MPFp)
reaction rate: (k25*[MPFp]*[Cdc25])/(Km25 + [Cdc25])
parameters: k25 = 0.02 1/minute
Km25 = 0.1 nM
species: Cdc25 = 1 nM (inactive)
Cdc25p = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF¥).
Reaction 37, Deactivation of Cdc25

Deactivation of cde25 phosphatase by dephosphorylation with an unknown phosphatase.

reaction: Cdc25p -> Cdc25
reaction rate: (k25r*[Cdc25p])/(Km25r + [Cdc25p])
parameters: k25r = 0.1 nM/minute
Km25r = 1 nM
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species:

Cdc25 = 1 nM (inactive)
Cdc25p = 0 nM (active)

Reaction 38, Deactivation of Wee1 by Active MPF

Deactivation of Weel kinase by phosphorylation with active M-phase promoting factor

(MPFp).

reaction:
reaction rate:
parameters:

species:

Weel + (MPFp) -> Weelp + (MPFp)
(kw*[MPFp]*[Weel])/(Kmw + [Weel]) nM/minute
kw = 0.02 1/minute

Kmw = 0.1 nM

Weelp = 1 nM (inactive)

Weel = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 39, Activation of Weel

Activation of Weel kinase by dephosphorylation with an unknown kinase.

reaction:
reaction rate:
parameters:

species:

Weelp -> Weel

(kwr*[Weelp])/(Kmwr + [Weelp]) nM/minute
kwr = 0.1 nM/minute

Kmwr = 1 nM

Weelp = 1 nM (inactive)

Weel = 0 nM (active)

Reaction 40, Activation of Intermediate Enzyme by Active MPF

The inactive intermediate enzyme (IE) is activated by phosphorylation with active M-
phase promoting factor (MPFp).

reaction:
reaction rate:
parameters:

species:

IE + (MPFp) -> 1Ep + (MPFp)
(kie*[MPFp1*[IE])/(Kmie + [IE])
kie = 0.02 1/minute

Kmie = 0.01nM

IE = 1 nM (inactive)

IEp = 0 nM (active)

Reaction 41, Deactivation of IE

The active intermediate enzyme (IE) is deactivated by dephosphorylation.
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reaction: IEp -> IE
reaction rate: (kier*[1Ep])/(Kmier + [IEp])
parameters: kier = 0.15 nM/minute
Kmier = 0.01 nM
species: IE = 1 nM (inactive)
IEp = 0 nM (active)

Reaction 42, APC Activation by IEp

Anaphase-promoting complex (APC) is activated by an active intermediate enzyme (1Ep).

reaction: APCi + IEp -> APCa + IEp
reaction rate: (kap*[IEp]*[APCi])/(Kmap + [APCi])
parameters: kap = 0.13 1/minute

Kmap = 0.01 nM
species : APCi =1 nM
APCa = 0 nM

Reaction 43, APC Deactivation

Anaphase-promoting complex (APC) is deactivated.

reaction: APCa -> APCi
reaction rate: (kapr*[APCa])/(Kmapr + [APCa])
parameters: kapr = 0.13 nM/minute
Kmapr = 1 nM
species : APCi 1nM
APCa = 0 nM

Block Diagram of the M-Phase Control Model with Reactions
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